How ocean CO2 fluxes are estimatedmeasured - PowerPoint PPT Presentation

About This Presentation
Title:

How ocean CO2 fluxes are estimatedmeasured

Description:

How ocean CO2 fluxes are estimatedmeasured – PowerPoint PPT presentation

Number of Views:53
Avg rating:3.0/5.0
Slides: 53
Provided by: globalcarb
Category:

less

Transcript and Presenter's Notes

Title: How ocean CO2 fluxes are estimatedmeasured


1
How ocean CO2 fluxes are estimated/measured
Colm Sweeney csweeney_at_ldeo.columbia.edu Princet
on University and Lamont-Doherty Earth Observatory
2
Outline
  • Concept
  • -Ocean carbon chemistry primer
  • -The air-sea flux
  • II. The air-sea flux measurement
  • Covariance
  • Gradient technique
  • III. Surface measurements
  • Measurements of surface pCO2
  • Methods for interpolation
  • IV. Improving our estimates of air-sea fluxes
  • Time-space distribution of pCO2
  • Parameterization of gas transfer velocity

3
Ocean Carbon Chemistry Primer
CO2(gas)
CO2 H2O ?? H2CO3 H3CO2 ?? H HCO3- HCO3-
?? H CO32-
Carbonic acid
Bicarbonate
Carbonate
TCO2
CO2 CO32- ??2 HCO3-
4
Ocean Carbon Chemistry Primer
CO2(gas)
280 matm
560 matm
CO2 H2O ?? H2CO3 H3CO2 ?? H HCO3- HCO3-
?? H CO32-
8 mmol kg-1
15 mmol kg-1
Carbonic acid
1617 mmol kg-1
1850 mmol kg-1
Bicarbonate
268 mmol kg-1
176 mmol kg-1
Carbonate
1893 mmol kg-1
2040 mmol kg-1
TCO2
CO2 CO32- ??2 HCO3-
100 DpCO2? 8 DTCO2
Taken from Feely et al. (2001)
5
Concept
Keeling et al.
Eks(pCO2w)
River input 0.6 PgC yr-1 DpCO22 matm
Iks(pCO2a)
k f(u) Sc-n u frictional velocity s
solubility Sc schmit number (v/D) n
0.4 0.67 (high slopelow slope)
Net air-sea gas flux Fgasks(pCO2w-pCO2a)
6
Bomb 14C
Semi-infinite Half space
Broecker and Peng (1994)
Transfer velocity kav 22 cm/hr u 7.4 m/s
7
Early estimates air-sea CO2 exchange
n14N?14C
Natural 14CO2/12CO2 in gassing
Solve for I
14CO2/12CO2 out gassing
Decay 14C ? 14N e-
Pre-industrial assumption 14CO2 in 14CO2 out
Decay
0.061 mol m-2 yr-1 uatm-1 21.4 cm hr-1
8
Early estimates air-sea CO2 exchange
n14N?14C
Natural 14CO2/12CO2 in gassing
Outgassing of Radon
Solve for I
Rn
14CO2/12CO2 out gassing
222Rn ? 218Po 4He
226Raaq ? 222Rngas 4He
Decay 14C ? 14N e-
Rnmixed layer lRn Rnno loss
lRn lgas exchange

Pre-industrial assumption 14CO2 in 14CO2 out
Decay
0.062 mol m-2 yr-1 uatm-1 21.9 cm hr-1
0.061 mol m-2 yr-1 uatm-1 21.4 cm hr-1
9
Flux Measurements in the Atmosphere
10
Direct covariance technique
11
Covariance flux of H2O and CO2Fair-sealtc'w'gt
3-D Sonic Anemometers
H2O/CO2 samples
IR Detector (Sample)
Res
Pump
IR Detector (Motion Detection)
Std
12
Gradient Flux Technique
Frictional velocity
McGillis et al. (2001)
Gradient Function -empirically determined based
on Monin Obukhov (MO) similarity theory
Measured Gradient (3-13m)
Covariance intake
13
GasEx-98 Comparison-estimates of transfer
velocity
GasEx-2001
14
Estimates of gas transfer velocity
Rayleigh Distribution For ocean wind speeds P(u)
Bomb 14C kav22 cm /hr
k- short term
15
Estimates of CO2 fluxes from measurements of DpCO2
1. Shipboard measurements of atmospheric and
surface ocean pCO2
2. The ocean pCO2 climatology
3. Flux calculations using the climatology
16
Shipboard measurements of atmospheric and surface
ocean pCO2
17
Equilibration of air sample
Re-circulation
IR Detector
Air flow
Drain
18
Takahashi pCO2 database
1,183,000 measurements - Since 1968
19
Monthly distribution of pCO2
20
The climatology
  • Exclude all El-Nino years.
  • dramatic change in annual fluxes have been
    observed
  • El-Nino periods based on SIOlt-1.5 and SST changes.
  • 2. Normalize pCO2 single reference year (1995)
  • In warm waters (lat. lt45) DpCO2 remains constant
  • 3. Interpolate data on to 4ox 5ox 365 day grid
  • finite differencing algorithm is used with a 2-D
    transport model from Toggwieler et al. (1989) to
    propagate the influence of observed data at one
    day time steps. Distribution is solved iteratively

pCO2
Time
21
The pCO2 Climatology
22
Global CO2 flux
23
Test of interpolation
DpCO2
3.5
DT 0.28 C 0.8 PgC
24
Sampling resolution
250K samples (Takahashi 97)
500K samples (Takahashi 99)
940K samples (Takahashi 02)
25
Change in fluxes with increases in samples
PgC yr-1
26
Gas Transfer Velocity and Fluxes
27
Estimates using different gas exchange-wind speed
relationships
Feely et al., 2001
28
Long vs. short term winds
PgC yr-1
41 Year average Monthly
NCEP(1995)
29
Sources of uncertainty
  • Seasonal distribution of pCO2 (0.8 PgC)
  • Estimate of skin temperature (-0.6 to 0.1 PgC)
  • Estimates of the transfer velocity (20-40)
  • Estimates of windspeed (2 m/s)

30
How can we do better?
31
Factors influencing CO2 flux estimates
Wind
Wind Waves
Biology
Surface Film
k
DpCO2
SST
Bubbles
Near Surface Turbulence
Transport
Air-Sea CO2Flux
Bock et al. (1999)
32
Better spatial-temporal coverage
1. Deployment of ships and moorings
2. Predictions using synoptic data sets
33
Space and time coverage of ocean carbon observing
networks
time
centuries
Repeat Trans-basin Sections
decadal
Shipboard Time-Series
Inter-annual
Moored Time-Series
VOS surface pCO2
Remote sensing
seasonal
daily
Process Studies
hourly
space
Ocean Basin
1 m2
1 km2
Globe
Regional (106 km2)
34
Factors influencing surface water pCO2
Variable Range Relation Effect
Temperature (C) -2 30 (?ln pCO2/?T)
0.0423oC-1 400
TCO2(mmol kg-1) 1900-2200 (?ln pCO2/?Tln TCO2)
10 400
Salinity(mmol kg-1) 33.5-37 (?ln pCO2/?Tln S)
0.94 10
Alkalinity(mmol kg-1) 2150-2350 (?ln pCO2/?Tln
TALK) -9.4 -200
Alkalinity and salinity are proportional and can
be accounted for
35
Temperature correlations
Spring
Winter
Summer
Fall
Stephens et al., 1996
36
Prediction of DpCO2
37
Bermuda
100 uatm
4.23 C-1
9.5 C
160 uatm Due to temperature

Courtesy of Nick Bates
TCO233 mmol/kg
38
Temp vs. Biology
Takahashi et al. (2002)
39
CO2H2O ?? O2CH2O
Upwelling
Palmer Sta.
Temp. (C)
40
MODIS
41
Predicting pCO2
SST
NPP
Zmix
42
Estimates of gas transfer velocity
Wind
Wind Waves
Surface Film
k
Bubbles
Near Surface Turbulence
43
Gas exchange vs. rain rate (MP distribution)
Ho et al. 1997
44
Summary
  • I. The air-sea flux measurement
  • Provide true short-term (1 hr) measurements of
    flux which can be associated with wind speeds
    measured on that same time scale.
  • Are limited to areas of high DpCO2
  • II. Estimates using surface DpCO2
  • Provide us with estimates of fluxes on a monthly
    basis based climatology adjusted for a single
    non-El Nino year
  • Errors in flux estimates occur due to lack of
    direct pCO2, wind speed and understanding of the
    gas transfer velocity
  • III. Improving our estimates of air-sea fluxes
  • Time-space distribution of pCO2
  • Deployment of ships and buoys
  • Use of satellite measurements to calculate
    change in TCO2
  • Parameterization of gas transfer velocity
  • micro-scale measurements

45
Inventory methods
  • Estimates of integrated change in carbon
    inventory
  • 1) Time series approach
  • Comparing measurements made between two time
    intervals
  • Compare residuals of multiple parameter
    regressions using T, S, TALK and nutrients
  • 2) C Method
  • Estimate of the total inventory of anthropogenic
    carbon in any given region

46
(No Transcript)
47
Hydrographic samplisg stations
48
(No Transcript)
49
C Method (Gruber et al.)
DC
O2sat-O2 O2meas 0
Ceq280
pCO2(i)280
Cdiseq
170O2 116CO2
CaCO3
?Cbio
sT
Ca2CO32-
170 O2
16 NO32-
Soft tissue
Carbonate
?CbiorCODO2 ½(rNODO2DCO32-)
Cant Cm ?Cbio Ceq280 Cdiseq ?C -
?Cdiseq
50
Anthropogenic CO2
(mmol kg-1)
51
Pre-industrial CO2
(mmol kg-1)
52
International CLIVAR/CO2 Lines (including US)
CO2 Clivar Repeat Hydro.
Write a Comment
User Comments (0)
About PowerShow.com