Proteomics - PowerPoint PPT Presentation

1 / 65
About This Presentation
Title:

Proteomics

Description:

Proteins are the machines that drive much of biology ... Cut out. 2D-Gel. Spot. 14. Peptide Mass Fingerprint. Trypsin Digest. 15. Peptide Mass Fingerprint ... – PowerPoint PPT presentation

Number of Views:418
Avg rating:3.0/5.0
Slides: 66
Provided by: umiac7
Category:

less

Transcript and Presenter's Notes

Title: Proteomics


1
Proteomics Mass Spectrometry
  • Nathan Edwards
  • Center for Bioinformatics and Computational
    Biology

2
Outline
  • Proteomics
  • Mass Spectrometry
  • Protein Identification
  • Peptide Mass Fingerprint
  • Tandem Mass Spectrometry

3
Proteomics
  • Proteins are the machines that drive much of
    biology
  • Genes are merely the recipe
  • The direct characterization of a samples
    proteins en masse.
  • What proteins are present?
  • How much of each protein is present?

4
Systems Biology
  • Establish relationships by
  • Choosing related samples,
  • Global characterization, and
  • Comparison.

5
Samples
  • Healthy / Diseased
  • Cancerous / Benign
  • Drug resistant / Drug susceptible
  • Bound / Unbound
  • Tissue specific
  • Cellular location specific
  • Mitochondria, Membrane

6
2D Gel-Electrophoresis
  • Protein separation
  • Molecular weight (MW)
  • Isoelectric point (pI)
  • Staining
  • Birds-eye view of protein abundance

7
2D Gel-Electrophoresis
Bécamel et al., Biol. Proced. Online 2002494-104
.
8
Paradigm Shift
  • Traditional protein chemistry assay methods
    struggle to establish identity.
  • Identity requires
  • Specificity of measurement (Precision)
  • Mass spectrometry
  • A reference for comparison (Measurement ?
    Identity)
  • Protein sequence databases

9
Mass Spectrometer
  • ElectronMultiplier(EM)
  • Time-Of-Flight (TOF)
  • Quadrapole
  • Ion-Trap
  • MALDI
  • Electro-SprayIonization (ESI)

10
Mass Spectrometer (MALDI-TOF)
UV (337 nm)
Microchannel plate detector
Field-free drift zone
Source
Pulse voltage
Analyte/matrix
Ed 0
Length D
Length s
Backing plate (grounded)
Extraction grid (source voltage -Vs)
Detector grid -Vs
11
Mass Spectrum
12
Mass is fundamental
13
Peptide Mass Fingerprint
Cut out 2D-GelSpot
14
Peptide Mass Fingerprint
Trypsin Digest
15
Peptide Mass Fingerprint
MS
16
Peptide Mass Fingerprint
17
Peptide Mass Fingerprint
  • Trypsin digestion enzyme
  • Highly specific
  • Cuts after K R except if followed by P
  • Protein sequence from sequence database
  • In silico digest
  • Mass computation
  • For each protein sequence in turn
  • Compare computer generated masses with observed
    spectrum

18
Protein Sequence
  • Myoglobin - Plains zebraGLSDGEWQQV LNVWGKVEAD
    IAGHGQEVLI RLFTGHPETL EKFDKFKHLK TEAEMKASED
    LKKHGTVVLT ALGGILKKKG HHEAELKPLA QSHATKHKIP
    IKYLEFISDA IIHVLHSKHP GDFGADAQGA MTKALELFRN
    DIAAKYKELG FQG

19
Protein Sequence
  • Myoglobin - Plains zebraGLSDGEWQQV LNVWGKVEAD
    IAGHGQEVLI RLFTGHPETL EKFDKFKHLK TEAEMKASED
    LKKHGTVVLT ALGGILKKKG HHEAELKPLA QSHATKHKIP
    IKYLEFISDA IIHVLHSKHP GDFGADAQGA MTKALELFRN
    DIAAKYKELG FQG

20
Peptide Masses
  • 1811.90 GLSDGEWQQVLNVWGK
  • 1606.85 VEADIAGHGQEVLIR
  • 1271.66 LFTGHPETLEK
  • 1378.83 HGTVVLTALGGILK
  • 1982.05 KGHHEAELKPLAQSHATK
  • 1853.95 GHHEAELKPLAQSHATK
  • 1884.01 YLEFISDAIIHVLHSK
  • 1502.66 HPGDFGADAQGAMTK
  • 748.43 ALELFR

21
Peptide Mass Fingerprint
YLEFISDAIIHVLHSK
GHHEAELKPLAQSHATK
GLSDGEWQQVLNVWGK
HPGDFGADAQGAMTK
VEADIAGHGQEVLIR
HGTVVLTALGGILK
KGHHEAELKPLAQSHATK
ALELFR
LFTGHPETLEK
22
Mass Spectrometry
  • Strengths
  • Precise molecular weight
  • Fragmentation
  • Automated
  • Weaknesses
  • Best for a few molecules at a time
  • Best for small molecules
  • Mass-to-charge ratio, not mass
  • Intensity ? Abundance

23
Sample Preparation for MS/MS
24
Single Stage MS
MS
25
Tandem Mass Spectrometry(MS/MS)
Precursor selection
26
Tandem Mass Spectrometry(MS/MS)
Precursor selection collision induced
dissociation (CID)
MS/MS
27
Peptide Fragmentation
Peptides consist of amino-acids arranged in a
linear backbone.
N-terminus
H-HN-CH-CO-NH-CH-CO-NH-CH-CO-OH
Ri-1
Ri
Ri1
C-terminus
AA residuei-1
AA residuei
AA residuei1
28
Peptide Fragmentation
29
Peptide Fragmentation
yn-i-1
-HN-CH-CO-NH-CH-CO-NH-
CH-R
Ri
i1
R
i1
bi1
30
Peptide Fragmentation
Peptide S-G-F-L-E-E-D-E-L-K
31
Peptide Fragmentation
1166
1020
907
778
663
534
405
292
145
88
b ions
K
L
E
D
E
E
L
F
G
S
147
260
389
504
633
762
875
1022
1080
1166
y ions
100
Intensity
0
m/z
250
500
750
1000
32
Peptide Fragmentation
1166
1020
907
778
663
534
405
292
145
88
b ions
K
L
E
D
E
E
L
F
G
S
147
260
389
504
633
762
875
1022
1080
1166
y ions
y6
100
y7
Intensity
y5
b3
b4
y2
y3
b5
y8
y4
b8
y9
b6
b7
b9
0
m/z
250
500
750
1000
33
Peptide Identification
  • Given
  • The mass of the precursor ion, and
  • The MS/MS spectrum
  • Output
  • The amino-acid sequence of the peptide

34
Peptide Identification
  • Two paradigms
  • De novo interpretation
  • Sequence database search

35
De Novo Interpretation
36
De Novo Interpretation
37
De Novo Interpretation
38
De Novo Interpretation
39
De Novo Interpretation
from Lu and Chen (2003), JCB 101
40
De Novo Interpretation
41
De Novo Interpretation
from Lu and Chen (2003), JCB 101
42
De Novo Interpretation
  • Find good paths in spectrum graph
  • Cant use same peak twice
  • Simple peptide fragmentation model
  • Usually many apparently good solutions
  • Amino-acids have duplicate masses!
  • Best de novo interpretation may have no
    biological relevance
  • Identifies relatively few peptides in
    high-throughput workflows

43
Sequence Database Search
  • Compares peptides from a protein sequence
    database with spectra
  • Filter peptide candidates by
  • Precursor mass
  • Digest motif
  • Score each peptide against spectrum
  • Generate all possible peptide fragments
  • Match putative fragments with peaks
  • Score and rank

44
Peptide Fragmentation
K
L
E
D
E
E
L
F
G
S
100
Intensity
0
m/z
250
500
750
1000
45
Peptide Fragmentation
1166
1020
907
778
663
534
405
292
145
88
b ions
K
L
E
D
E
E
L
F
G
S
147
260
389
504
633
762
875
1022
1080
1166
y ions
100
Intensity
0
m/z
250
500
750
1000
46
Peptide Fragmentation
1166
1020
907
778
663
534
405
292
145
88
b ions
K
L
E
D
E
E
L
F
G
S
147
260
389
504
633
762
875
1022
1080
1166
y ions
y6
100
y7
Intensity
y5
b3
b4
y2
y3
b5
y8
y4
b8
y9
b6
b7
b9
0
m/z
250
500
750
1000
47
Sequence Database Search
  • Sequence fills in gaps in the spectrum
  • All candidates have biological relevance
  • Practical for high-throughput peptide
    identification
  • Correct peptide might be missing from database!

48
Peptide Candidate Filtering
  • Digestion Enzyme Trypsin
  • Cuts just after K or R unless followed by a P.
  • Must allow for missed cleavage sites
  • Average peptide length about 10-15 amino-acids

49
Peptide Candidate Filtering
  • gtALBU_HUMAN MKWVTFISLLFLFSSAYSRGVFRRDAHKSEVAHRFKDL
    GEENFKALVLIAFAQYLQQCPFEDHVKLVNEVTEFAK

No missed cleavage sites
MK WVTFISLLFLFSSAYSR GVFR R DAHK SEVAHR FK DLGEENF
K ALVLIAFAQYLQQCPFEDHVK LVNEVTEFAK
50
Peptide Candidate Filtering
  • gtALBU_HUMAN MKWVTFISLLFLFSSAYSRGVFRRDAHKSEVAHRFKDL
    GEENFKALVLIAFAQYLQQCPFEDHVKLVNEVTEFAK

One missed cleavage site
MKWVTFISLLFLFSSAYSR WVTFISLLFLFSSAYSRGVFR GVFRR RD
AHK DAHKSEVAHR SEVAHRFK FKDLGEENFK DLGEENFKALVLIAF
AQYLQQCPFEDHVK ALVLIAFAQYLQQCPFEDHVKLVNEVTEFAK
51
Peptide Scoring
  • Peptide fragments vary based on
  • The instrument
  • The peptides amino-acid sequence
  • The peptides charge state
  • Etc
  • Search engines model peptide fragmentation to
    various degrees.
  • Speed vs. sensitivity tradeoff
  • y-ions b-ions occur most frequently

52
Mascot Search Engine
53
Mascot MS/MS Ions Search
54
Mascot MS/MS Search Results
55
Mascot MS/MS Search Results
56
Mascot MS/MS Search Results
57
Mascot MS/MS Search Results
58
Mascot MS/MS Search Results
59
Mascot MS/MS Search Results
60
Mascot MS/MS Search Results
61
Mascot MS/MS Search Results
62
Mascot MS/MS Search Results
63
Mascot MS/MS Search Results
64
Summary
  • Protein identification by mass spectrometry is a
    key element of proteomics and systems biology.
  • Mass spectrometry sequence databases represent
    a huge leap for protein (bio-)chemistry.
  • Sample prep, instruments and algorithms still
    maturing, much work to be done.

65
Further Reading
  • Matrix Science (Mascot) Web Site
  • www.matrixscience.com
  • Seattle Proteome Center (ISB)
  • www.proteomecenter.org
  • Proteomic Mass Spectrometry Lab at The Scripps
    Research Institute
  • fields.scripps.edu
  • UCSF ProteinProspector
  • prospector.ucsf.edu
Write a Comment
User Comments (0)
About PowerShow.com