Title: Pfizer HTS Machine Learning Algorithms: November 2002
1Pfizer HTS Machine Learning Algorithms November
2002
- Paul Hsiung (hsiung_at_cs.cmu.edu)
- Paul Komarek (komarek_at_cs.cmu.edu)
- Ting Liu (tingliu_at_cs.cmu.edu)
- Andrew W. Moore (awm_at_cs.cmu.edu)
- Auton Lab, Carnegie Mellon University
- School of Computer Science
- www.autonlab.org
2Datasets
3Projections
4Previous Algorithms
5New Algorithms
6Explicit False Positive Model
7Explicit False Positive Model
8Example in 2 dimensions Decision Boundary
9Example in 2 dimensions 100 true positives
10100 true positives and 100 true negatives
11100 TP, 100 TN, 10 FP
12Using regular logistic regression
13Using EFP Model
14Example 10000 true positives
1510000 true positives, 10000 true negatives
1610000 TP, 10000 TN, 1000 FP
17Using regular logistic regression
18Using EFP Model
19EFP Model Real Data Results
K-fold
20EFP Effect
Very impressive on Train1 / Test1
21Log X-axis
22EFP Effect
Unimpressive on jun31 / jun32
23Super Model
- Divide Training Set into Compartment A and
Compartment B - Learn each of N models on Compartment A
- Predict each of N models on Compartment B
- Learn best weighting of opinions with Logistic
Regression of Predictions on Compartment B - Apply the models and their weights to Test Data
24Comparison
25Log X-Axis Scale
26Comparison on 100-dims
27Log X-axis
28Comparison on 10 dims
29Log X-axis
30NewKNN summary of results and timings
31(No Transcript)
32(No Transcript)
33(No Transcript)
34(No Transcript)
35(No Transcript)
36(No Transcript)
37(No Transcript)
38(No Transcript)
39(No Transcript)
40(No Transcript)
41(No Transcript)
42(No Transcript)
43(No Transcript)
44(No Transcript)
45PLS summary of results
- PLS projections did not do so well.
- However, PLS as a predictor performed
well,especially under train100/test100. - PLS is fast. The runtime varies from 1 to 10
minutes. - But PLS takes large amounts of memory.
Impossibleto use in a sparse representation.
(This is due to theupdate on each iteration.)
46(No Transcript)
47(No Transcript)
48(No Transcript)
49(No Transcript)
50(No Transcript)
51(No Transcript)
52(No Transcript)
53(No Transcript)
54(No Transcript)
55(No Transcript)
56(No Transcript)
57(No Transcript)
58(No Transcript)
59(No Transcript)
60(No Transcript)
61(No Transcript)
62(No Transcript)
63(No Transcript)
64(No Transcript)
65(No Transcript)
66(No Transcript)
67(No Transcript)
68(No Transcript)
69(No Transcript)
70(No Transcript)
71(No Transcript)
72Summary of results
- SVM best early on in Train1, LR better in the
long-haul. - Projecting to 10-d always a disaster
- Projecting to 100-d often indistinguishable from
behavior with original data (and much cheaper) - Naïve Gaussian Bayes Classifier best on JUN-3-1
(k-nn better for long haul) - Naïve Gaussian Bayes Classifier best on combined
- Non-linear SVM never seems distinguishable from
Linear SVM - All methods have won in at least one context,
except Dtree.
73Some AUC Results
Not statistically significantly different
74Some AUC Results