Digital image basics - PowerPoint PPT Presentation

1 / 45
About This Presentation
Title:

Digital image basics

Description:

3. Vision property (cont'd) Spatial discrimination (SD) ... 3. Vision property (cont'd) d. L. theta. eye. Spatial discrimination (SD) ... – PowerPoint PPT presentation

Number of Views:92
Avg rating:3.0/5.0
Slides: 46
Provided by: liju4
Category:
Tags: basics | digital | image

less

Transcript and Presenter's Notes

Title: Digital image basics


1
Digital image basics
  • Human vision perception system
  • Image formation
  • Human vision property and model
  • Image acquisition
  • Image transform
  • Image quality
  • Connected components
  • Image sensing
  • Image formats

2
1. Human vision
3
1. Human vision (contd)
  • Two types of receptors
  • -- Cones (fovea) sensitive to brightness
    and color
  • - 7M
  • - Cone-vision (photopic, bright-light
    vision)
  • -- Rod (cell) sensitive to low-level
    illumination
  • - 100M
  • - Rod-vision (scopotic, dim-light
    vision)

4
2. Image perception and formation
5
3. Vision property
6
3. Vision property (contd)
  • Brightness adaptation
  • -- There are a range of intensity levels
    that human eye can adapt
  • - photopic 10(-3) (mL) 10(3) (mL)
  • - scopotic 10(-3) (mL) 10(-1) (mL)
  • -- Human eyes have brightness adaptation
    level,
  • they cannot adapt the whole range
  • simultaneously

7
3. Vision property (contd)
  • Brightness discrimination
  • -- The ability to discriminate different
    intensity level
  • - Weber ratio just noticeable
    difference of intensity versus the background
    intensity
  • -- The intensity defined in the digital
    image is not the real intensity. It is a contrast
    scale (e.g., gray scale)

8
3. Vision property (contd)
  • Contrast
  • -- Absolute contrast
  • C Bmax / Bmin
  • where Bmax is the maximum brightness intensity
  • Bmin is the minimum brightness intensity
  • -- Relative contrast
  • Cr (B B0) / B0
  • B is the brightness of object B0 is
    the background brightness
  • -- Mach Band over-shooting effect

9
(No Transcript)
10
3. Vision property (contd)
  • Spatial discrimination (SD)
  • -- minimum view angle which can
    discriminate two points on the object to be
    viewed
  • d/(2 Pi L) theta / 360

11
3. Vision property (contd)
  • Spatial discrimination (SD)
  • -- low illumination (SD decreases)
  • -- low contrast (SD decreases)
  • -- too high illumination (SD does not
    increase too much)
  • -- SD of color is weaker than SD of
    brightness
  • -- projection on fovea (SD increases)

12
3. Vision property (contd)
  • Human vision model
  • -- g(x, y) T f(x, y)
  • -- T transform input optical scene to
    output image
  • - linear or non-linear transform
  • - H(u,v) low pass filter (e.g., limited
    discrimination, linear)
  • - log response to the brightness (e.g.,
    non-linear)
  • - time-delay effect (e.g.,
    image-remain effect)

13
4. Image acquisition
  • Wavelength
  • -- electromagnetic spectrum

14
4. Image acquisition (contd)
  • Principle of imaging sensor
  • -- transform illumination energy into
    digital image
  • -- output voltage waveform is proportional
    to light
  • -- e.g., single sensor, group sensors
    (one-strip, CT/MRI), group sensors (2D array CCD)

15
4. Image acquisition (contd)
  • Image digitizing
  • -- Sampling digitizing the coordinate
    values (spatially)
  • - Nyquest rate 2F(max)
  • - limited by the number of sensors
  • - spatial sampling uniform and
    non-uniform
  • (e.g., fovea-based, fish-eye
    based)
  • -- Quantization digitizing the amplitude
    values
  • - uniform
  • - non-uniform (based on image
    characteristics)

16
4. Image acquisition (contd)
  • Image digitizing
  • -- f(x, y) is the gray level at pixel
    location (x, y)
  • -- Gray level is not real illumination
    intensity (it is an
  • index of the gray scale)
  • -- f(x, y) is in the range of 0, 255 for
    8-bit image
  • -- the image with size of MN and k bits
    per pixel,
  • has the total bits MNk

17
4. Image acquisition (contd)
  • Spatial resolution
  • -- number of pixels with respect to the
    image size
  • -- line pair smallest discernible detail
    per unit
  • distance in an image
  • - e.g., 100 lp/mm.

18
4. Image acquisition (contd)
  • Relationship between spatial resolution N and
    gray level resolution K
  • -- N ? and K ? ? quality ?
  • -- N ? and K ? ? contrast ?
  • -- N (detail) ? ? K (number of gray level)
    can be ?
  • (e.g., half-tone image)

19
4. Image acquisition (contd)
  • Aliasing problem
  • -- JigJag or staircase effect.
  • -- occurs in image acquisition (e.g.,
    image processing)
  • -- occurs in display (e.g., computer
    graphics)
  • -- Reasons
  • The sampling or displaying resolution
    is lower than the
  • minimum rate 2F(max), which is the
    Nyquest rate.
  • -- Possible solution
  • - Smooth image before sampling to
    reduce the F(max)
  • - side-effect image blurred, quality
    ?

20
5. Image transform
  • Size change
  • -- Zoom-in
  • -- Zoom-out
  • -- pixel replication
  • -- pixel interpolation
  • -- super-resolution
  • Shape change
  • -- geometric transformation

21
6. Image quality
  • Subjective
  • -- Rating (e.g., R1, 2,, 5)
  • where N is the number of evaluators Ji ?R
  • -- application in image enhancement,
    restoration, compression, etc.

22
6. Image quality
  • Objective
  • -- Mean square error
  • -- dB value -10Log(E)
  • -- f(x,y) is the image to be evaluated.
  • f(x,y) is the reference image to be
    compared with.
  • -- application in image coding, etc.

23
7. Connected components
  • Relationship of pixels
  • -- Four neighbors of pixel P
  • - N4(P) (strong neighbors)
  • - ND(P) (weak neighbors)
  • -- Eight neighbors of pixel P
  • - N8(P) N4(P) ND(P)

P
Strong
weak
8-neighbor
24
7. Connected components (contd)
  • Adjacency
  • -- 4-adjacency
  • -- 8-adjacency
  • -- m-adjacency (mixed-adjacency)

q
P
P
q
q
4-connected pq
is not m-connected 8-connected
m-adjacent if q is N4(p), or
q is Nd(p)
and N4(p) ?N4(q) ?
25
7. Connected components (contd)
  • Path
  • -- If p and q is connected, there is a path
    between p and q.
  • -- m path the path between p and q based on
    m-connected pixels.
  • -- closed path starting p and ending q are
    connected

26
7. Connected components (contd)
  • Connected component
  • -- set of pixels which are connected
  • -- The set is also called connected set
  • Concept
  • -- R is a region if R is a connected set
  • -- boundary of R is closed path
  • -- edge gray-level discontinuity at a point
  • - link edge points ? edge segment

27
7. Connected components (contd)
  • Distance
  • -- D(p, q) is defined as the distance between
    p and q.
  • D(p, q) gt0
  • D(p, q) D(q, p)
  • D(p, q) lt D(p,z) D(q,z)
  • -- Euclidean distance (disk shape)
  • De(p,q) sqrt(xp xq)(2) (yp
    yq)(2)

28
7. Connected components (contd)
  • Distance
  • -- D4 distance (city-block distance) (diamond
    shape)
  • D4(p,q) (xp xq) (yp yq)
  • 2
  • 2 1 2
  • 2 1 0 1 2
  • 2 1 2
  • 2

29
7. Connected components (contd)
  • Distance
  • -- D8 distance (chessboard distance) (square
    shape)
  • D8(p,q) max((xp xq), (yp yq))
  • 2 2 2 2 2
  • 2 1 1 1 2
  • 2 1 0 1 2
  • 2 1 1 1 2
  • 2 2 2 2 2

30
7. Connected components (contd)
  • Distance
  • -- Dm distance (shortest m-path between two
    points)
  • 1 - 1
  • 1 - 1
  • 1
  • Dm 4

31
8. Pixel operation
  • Point-wise operation
  • -- MN image bound matrix

t
r
(r,t) coordinates of upper-left component each
component is either defined (which is represented
by a certain intensity value), or undefined
(which is represented by ).
32
8. Pixel operation (Contd)
  • Arithmetic operation
  • (1) ADDf, g(I,j)
  • f(I,j) g(I,j) IF
    f(I,j) ? ? and g(I,j) ? ? (C1)
  • ?
    otherwise
  • (2) Multf,g(I,j)
  • f(I,j) g(I,j) IF C1
  • ?
    otherwise
  • (3) SCALARt f(I,j)
  • t f(I,j) IF
    f(I,j) ? ?
  • ?
    otherwise

33
8. Pixel operation (Contd)
  • Arithmetic operation
  • (4) Maxf,g(I,j)
  • maxf(I,j), g(I,j) IF
    C1
  • ?
    otherwise
  • (5) Minf,g(I,j)
  • minf(I,j), g(I,j) IF
    C1
  • ?
    otherwise
  • (6) Subf(I,j)
  • -f(I,j) IF
    f(I,j) ? ?
  • ?
    otherwise
  • (6) SCALARt f(I,j)
  • t f(I,j) IF
    C1
  • ?
    otherwise

34
8. Pixel operation (Contd)
  • Arithmetic operation
  • (7) EXTENDf,g(I,j)
  • f(I,j) IF
    f(I,j) ? ?
  • g(I,j)
    otherwise
  • (8) EXTADDf,g(I,j)
  • ADDf,g(I,j) IF C1
  • f(I,j) IF
    f(I,j) ? ? and g(I,j) ?
  • g(I,j) IF
    g(I,j) ? ? and f(I,j) ?
  • both
    g and f on undefined domain

35
8. Pixel operation (Contd)
  • Arithmetic operation
  • (9) THRESHf,t(I,j)
  • 1 IF f(I,j) ?
    t
  • 0 IF f(I,j) lt
    t
  • ? IF f(I,j)
    ?
  • (10) TRUNCf,t(I,j)
  • f(I,j) IF f(I,j)
    ? t
  • 0 IF f(I,j) lt
    t
  • ? IF f(I,j)
    ?
  • TRUNCf,g(I,j) Multf, THRESH(f, t)

36
8. Pixel operation (Contd)
  • Arithmetic operation
  • (11) EQUALf,t(I,j)
  • 1 IF f(I,j)
    t
  • 0 otherwise
  • on the
    undefined domain
  • (12) similar definition for
  • GREATERf,t(I,j)
  • BETWEENf, t1, t2(I,j)
  • (13) operation with masking
  • AND, OR, NOT.

37
8. Pixel operation (Contd)
  • Arithmetic operation
  • (14) PIXSUM(f) is the summation of all
    pixels on the
  • defined domain
  • (15) DOT(f,g) SUMf(I,j) ? g(I,j) on the
    common domain
  • (16) Norm(f) SUMf(I,j)2(1/2)
  • Norm(f) (DOT(f,f))(1/2)

38
8. Pixel operation (Contd)
  • Arithmetic operation
  • (17) RESTf,g(I,j)
  • f(I,j) IF
    g(I,j) ? ?
  • ? IF
    g(I,j) ?
  • (18) Note
  • Linear operation H(af bg) aH(f)
    bH(g)
  • otherwise non-linear operation
    (e.g., f-g operation)
  • H operator
  • f, g images
  • a, b scale values

39
Image Sensing
  • Single Image Sensor
  • Line Sensor (Sensor strip)
  • Array Sensor

40
Image Sensing
  • Linear motion
  • Rotation
  • Sensing Ring for CT (x-ray) to create
    cross-sectional images

41
Image Format
  • TIF (LZW lossless coding)
  • GIF
  • JPEG
  • BMP

42
Image Format
  • TIF (LZW lossless coding)
  • Tagged image file format
  • Image head
  • field tags values
  • image size
  • compression
  • color depth
  • location of data
  • bits per sample
  • .

43
Image Format
  • JPEG
  • 88 blocks ? DCT ? Coefficient quantization ?
    Huffman coding ? zig-zag run-length coding

44
Demo
45
Image Format
  • BMP
  • PBM - portable bitmap file format (binary)
  • PGM portable greymap (grey scale)
  • PPM portable pixmap (color)
Write a Comment
User Comments (0)
About PowerShow.com