Title: Equilibrium dynamics of entangled states near quantum critical points
1Equilibrium dynamics of entangled states near
quantum critical points
Physical Review Letters 78, 843 (1997) 78,
2220 (1997) 95, 187201 (2005).
Kedar Damle (TIFR, Mumbai)
Subir Sachdev (Harvard)
Peter Young (UCSC)
Talk online at http//sachdev.physics.harvard.edu
2Why study quantum phase transitions ?
gc
g
- Critical point is (often) a novel (entangled)
state of matter without quasiparticle excitations
- Critical excitations control dynamics in the
wide quantum-critical region at non-zero
temperatures.
3I. Quantum Ising Chain
4(No Transcript)
5Experimental realization
LiHoF4
6Weakly-coupled qubits
Ground state
7Weakly-coupled qubits
Quasiparticle pole
Three quasiparticle continuum
3D
Structure holds to all orders in 1/g
8Quantum mechanical S-matrix has a universal
form at low momenta (in one
dimension)
(-1)
9(No Transcript)
10(No Transcript)
11(No Transcript)
12Strongly-coupled qubits
Ground states
13Strongly-coupled qubits
Two domain-wall continuum
2D
Structure holds to all orders in g
14(No Transcript)
15(No Transcript)
16(No Transcript)
17Entangled states at g of order unity
18Critical coupling
No quasiparticles --- dissipative critical
continuum
19S. Sachdev and J. Ye, Phys. Rev. Lett. 69, 2411
(1992). S. Sachdev and A.P. Young, Phys. Rev.
Lett. 78, 2220 (1997).
20II. Quantum O(3) non-linear s model
21Quantum mechanical S-matrix has a universal
form at low momenta (in one
dimension)
(-1)
22t
x
23(x,t)
t
(0,0)
x
24(No Transcript)
25III. Quantum sine-Gordon model
26Quantum mechanical S-matrix has a universal
form at low momenta (in one
dimension)
(-1)
27(No Transcript)
28(No Transcript)
29III. Quantum sine-Gordon model
30Conclusions
- Large, entangled quantum systems close to
equilibrium have an intrinsic relaxation rate
independent of the strength of the coupling to a
heat bath. - This relaxation rate has a universal form near
interacting quantum critical points - In one-dimensional systems