Title: Folie 1
1Ingo Rechenberg
Artificial Evolution The Evolution
Strategy
Technische Universität Berlin
Shanghai Institute for Advanced Studies
2Biological Evolution
3Artificial Evolution
Competition
!
More and more crabs
errors
Making copies with errors
Science fiction story The Crab Island
4Artificial Evolution
Evolution
Competition
!
More and more crabs
errors
Making copies with errors
Science fiction story The Crab Island
unweld
5The science fiction story gave rise to the design
of an artificial evolution experiment
6Island
Windtunnel
Flexible flow body
Crab
Adjustable gear instead of making a copy
7Idea for a mechanical evolution experiment
8DARWIN in the windtunnel
The kink plate for the key experiment with the
Evolution Strategy
9Number of possible adjustments
515
345 025 251
10The kink plate
Nails which vertically jut out of the wall
The mutation apparatus GALTONs pin board
11The experimentum crucis Drag minimization of
the kink plate
12Change of the environment
13Drag minimization of the kink plate when the
environment changes
14Artificial Evolution
Zigzag after DARWIN
Story in the Magazin
18 th November 1964
15Evolution of a 90 pipe bend
Six manually adjustable shafts determine the form
of the 90pipe bend
16Evolution of a 180 pipe bend
10 robot-controlled cable-drives alter the
180pipe bend
17Optimized 90 pipe bend
Optimized 180 pipe bend
18Exchangeable segments made the flow nozzle mutable
19Evolution of a two phase flow nozzle (Hans-Paul
Schwefel)
20From Eohippus to Equus
60 million years
biological evolution
21Fitness
Evolution means climbing a
fitness-hill
22Evolution-Strategy
carnation
23Elementary Evolution-Strategic Algorithms
24(1 1)-ES
DARWINs theory at the level of maximum abstraction
25(1 , l)-ES
l 6
Evolution Strategy with more than one offspring
26(m , l)-ES
m 2
l 7
Evolution Strategy with more parents and more
offspring
27(m /r , l)-ES
m 2
r 2
l 8
Evolution Strategy with mixing of variables
28New founder populations
The Nested Evolution Strategy
29The notation
will be an algebraic scheme
30An artificial evolution experiment in the
windtunnel
31Evolution of a spread wing in the windtunnel
32Photo Michael Stache
Multiwinglets at a glider designed with the
Evolution Strategy
33The difference between mathematical optimization
and optimization in the real physical world
Ideal function in the mathematical world
Rugged hill in the experimental world
34Mimicry in biological evolution
Good tasting
Bad tasting
35A blue jay eats a monarch
But it doest taste
Because of nausea the feathers struggle
Out with the poison
And the teaching isnt forgotten
Subjective selection in nature
36Mimicry in biological evolution
Good tasting
Bad tasting
37Subjective color adaptation
38Subjective Selection
Coffee-composition using the Evolution Stratey
Mix of the offspring
Target coffee
39Parent 25 Columbia 40 Sumatra 13 Java
5 Bahia 17 Jamaica
Offspring 1 20 Columbia 34 Sumatra 23
Java 5 Bahia 18 Jamaica
Offspring 2 23 Columbia 37 Sumatra 12
Java 10 Bahia 18 Jamaica
Offspring 3 25 Columbia 32 Sumatra 15
Java 8 Bahia 20 Jamaica
Offspring 4 30 Columbia 38 Sumatra 8
Java 2 Bahia 22 Jamaica
Offspring 5 33 Columbia 38 Sumatra 9
Java 8 Bahia 12 Jamaica
E
N
3
Subjective evaluation
M. Herdy
Evolution-strategic development of a coffee blend
40Evolutionary Experimentation (EE) Analog
computation in physical systems
Evolutionary Computation (EC) Digital
computation in mathematical models
41Darwin was very uncertain whether his theory is
correct.
He stated in his book The Origin of Species
To suppose that the eye, with all its inimitable
contrivances for adjusting the focus to different
distances, for admitting different amounts of
light, and for the correction of spherical and
chromatic abberation, could have been formed by
natural selection, seems, I freely confess,
absurd in the highest possible degree.
42Evolution of an eye lens
Computer simulated evolution of a covergent lens
Flexible glass body
43Evolution-strategic development of a framework
construction
44Weight ? Minimum
45Weight ? Minimum
46Weight ? Minimum
47Weight ? Minimum
48Evolution-strategic optimization of a truss
bridge with minimum weight
49Bridge designs
Fishbelly bridge
Arched bridge
50Dynamic optimization of a truss bridge
51Melencolia, engraved in 1514 by Albrecht Dürer
Chinese
Magic Square
522 0 0 7
53Objective function for a 3 ?3-square ?
54Theory of the Evolution Strategy
55Search for a document
(Search)Strategies are of no use in an disordered
world
(Search)Strategies need a predictable order of
the world
56Strategy in military operation
A military strategy is of no use, if the enemy
behaves randomly
General
57An evolution strategy is of no use, if nature
(opponent) behaves randomly
Evolution Strategist
58A predictable world order is
Causality
Equal cause, equal effect
Weak Causality
Similar cause, not similar effect
Strong Causality
!
Similar cause, similar effect
59Billiards-Effect
Example for weak causality
60Strong Causality
Normal behaviour of the world
61Strong causality
Weak causality
Weak and strong causality in a graphic view
62Search area
Experimenter
Plumbing the depth
The search for the optimum
63Search area
Experimenter
Plumbing the depth
The search for the optimum
64Definition of the rate of progress
j
j
65nonlinear
Local climbing of the Evolution Strategy
66d
d
2
j
W
-
2
n
n
? Complexity
67(No Transcript)
680
,
3
F
0
,
2
0
,
1
0
-
-
-
5
3
1
3
1
1
0
1
0
1
0
1
0
1
0
D
Central law of progress
69not so
but so
70Evolution means climbing a
fitness-hill
71(No Transcript)
720
,
3
F
0
,
2
0
,
1
0
-
-
-
5
3
1
3
1
1
0
1
0
1
0
1
0
1
0
D
How to find the Evolution Window ?
73Duplicator
DNA
Mutation
cator
dupli
the
made
Has
Heredity of the mutability
Crucial point of the Evolution Strategy
74Fraidycat
N
Hothead
Two mountaineers, two climbing styles
75Two moutaineers, two climbing styles
In a compact notation
2
Nested Evolution Strategy
76MATLAB-program of the (1, l )-ES
77MATLAB-program of the (1, l )-ES
v100 de1 xeones(v,1)
78MATLAB-program of the (1, l )-ES
v100 de1 xeones(v,1) for
g11000 end
79MATLAB-program of the (1, l )-ES
v100 de1 xeones(v,1) for g11000
qb1e20 end
80MATLAB-program of the (1, l )-ES
v100 de1 xeones(v,1) for g11000
qb1e20 for k110 end end
81MATLAB-program of the (1, l )-ES
v100 de1 xeones(v,1) for g11000
qb1e20 for k110 if rand lt 0.5
dnde1.3 else dnde/1.3
end end end
82MATLAB-program of the (1, l )-ES
v100 de1 xeones(v,1) qesum(xe.2) for
g11000 qb10000 for k110 if
rand lt 0.5 dnde1.3 else dnde/1.3
end xnxednrandn(v,1)/sqrt(v)
end end
83MATLAB-programm of the (1, l )-ES
v100 de1 xeones(v,1) for g11000
qb1e20 for k110 if rand lt 0.5
dnde1.3 else dnde/1.3 end
xnxednrandn(v,1)/sqrt(v)
qnsum(xn.2) end end
84MATLAB-programm of the (1, l )-ES
v100 de1 xeones(v,1) for g11000
qb1e20 for k110 if rand lt 0.5
dnde1.3 else dnde/1.3 end
xnxednrandn(v,1)/sqrt(v)
qnsum(xn.2) if qn lt qb
qbqn dbdn xbxn end end
end
85MATLAB-programm of the (1, l )-ES
v100 de1 xeones(v,1) for g11000
qb1e20 for k110 if rand lt 0.5
dnde1.3 else dnde/1.3 end
xnxednrandn(v,1)/sqrt(v)
qnsum(xn.2) if qn lt qb
qbqn dbdn xbxn end end
qeqb dedb xexb end
86MATLAB-programm of the (1, l )-ES
v100 de1 xeones(v,1) for g11000
qb1e20 for k110 if rand lt 0.5
dnde1.3 else dnde/1.3 end
xnxednrandn(v,1)/sqrt(v)
qnsum(xn.2) if qn lt qb
qbqn dbdn xbxn end end
qeqb dedb xexb semilogy(g,qe,'b.')
hold on drawnow end
Fitness function
87I thank you for your attention
www.bionik.tu-berlin.de