Crosssection topology Michel Couprie - PowerPoint PPT Presentation

About This Presentation
Title:

Crosssection topology Michel Couprie

Description:

Topology preservation - notion of simple point ... Definition: a point p is constructible (for F) if it is destructible for -F (duality) ... – PowerPoint PPT presentation

Number of Views:79
Avg rating:3.0/5.0
Slides: 64
Provided by: Admini243
Category:

less

Transcript and Presenter's Notes

Title: Crosssection topology Michel Couprie


1
Cross-section topologyMichel Couprie
  • Contributors
  • G. Bertrand
  • M. Couprie
  • J.C. Everat (PhD)
  • F.N. Bezerra (PhD)

2
Functions of 2 variables
3
On hills and dales
Cayley 1859, Maxwell 1870
4
BINARY IMAGES (SETS)
5
Topology preservation - notion of simple point
  • A topology-preserving transformation preserves
    the connected components of both X and X

6
Simple point
Set X (black points)
  • Definition (2D) A point p is simple (for X) if
    its modification (addition to X, withdrawal from
    X) does not change the number of connected
    components of X and X

7
Simple point local characterization ?
8
Simple point local characterization ?
9
Connectivity numbers
  • T(p)number of Connected Components of (X - p)
    N(p) where N(p)8-neighborhood of p
  • T(p)number of Connected Components of (X - p)
    N(p)
  • Characterization of simple points (local) p is
    simple iff T(p) 1 and T(p) 1

U
U
T2,T2
T1,T1
T1,T0
T0,T1
Isolated point
Interior point
10
Homotopy
  • We say that X and Y are homotopic (they have the
    same topology) if Y may be obtained from X by
    sequential addition or deletion of simple points

11
Homotopy illustration
12
GRAYSCALE IMAGES (FUNCTIONS)
13
Homotopy of functions
  • Basic idea consider the topology of each
    cross-section (threshold) of a function
  • Given a function F (Z2 Z) and k in Z, we
    define the cross-section Fk as the set of points
    p of Z2 such that F(p) ? k
  • We say that two functions F and G are homotopic
    if, for every k in Z, Fk and Gk are homotopic (in
    the binary sense)Beucher 1990

14
Homotopy of functions
y
y
F(x,y)
G(x,y)
x
x
15
Homotopy of functions
y
y
F(x,y)
G(x,y)
x
x
16
Homotopy of functions
y
y
F(x,y)
G(x,y)
x
x
17
Destructible point Bertrand 1997
  • Definition a point p is destructible (for F) if
    it is simple for Fk, with k F(p)
  • Property p is destructible iff its value may be
    lowered by one without changing the topology of
    any cross-section
  • Definition a point p is constructible (for F) if
    it is destructible for -F (duality)

18
Destructible point examples
y
F(x,y)
x
F3
F2
F1
19
Destructible point examples
y
F(x,y)
x
F3
F2
F1
20
Destructible point examples
y
F(x,y)
x
F3
F2
F1
21
Destructible point counter-examples
y
F(x,y)
x
F3
F2
F1
22
Destructible point counter-examples
y
F(x,y)
x
F3
F2
F1
23
Connectivity numbers
  • N(p) q in N(p), F(q) ? F(p)
  • T(p) number of Conn. Comp. of N(p) .
  • N--(p) q in N(p), F(q) lt F(p)
  • T--(p) number of Conn. Comp. of N--(p) .
  • N, T, N-, T- similar
  • If an adjacency relation (eg. 4) is chosen for
    T, T, then the other adjacency (8) must be
    used for T-, T--

24
Destructible point local characterization
  • The point p is destructible if and only if
    T(p) 1 and T--(p) 1

1
2
1
1
2
8
1
2
1
9
5
1
9
5
8
1
5
1
9
9
9
9
1
1
2
2
1
T 1
T 2
T 0
T-- 1
T-- 2
T-- 1
destructible
non-destructible
non-destructible
25
Classification of pointsBertrand 97
  • The local configuration of a point p corresponds
    to exactly one of the eleven following cases
  • well (T- 0)
  • minimal constructible(T T- 1, T-- 0)
  • minimal convergent(T gt 1, T-- 0)
  • constructible divergent (T T- 1, T-- gt 1)
  • peak (T 0)
  • maximal destructible(T T-- 1, T 0)
  • maximal divergent(T-- gt 1, T 0)
  • destructible convergent (T T-- 1, T gt 1)
  • interior (T T-- 0)
  • simple side (T T-- T T- 1)
  • saddle (T gt 1, T-- gt 1)

26
Classification of points examples
1
2
1
1
2
8
5
5
5
9
5
1
9
5
8
5
5
5
9
9
9
9
1
1
5
5
5
Simple side
Saddle
Interior
1
2
1
1
2
1
1
2
1
2
1
2
1
5
1
9
9
1
9
9
9
5
9
9
2
2
1
9
9
1
1
1
1
9
9
5
Peak
Maximaldestructible
Maximaldivergent
Destructibleconvergent
27
Grayscale skeletons
  • We say that G is a skeleton of F if G may be
    obtained from F by sequential lowering of
    destructible points
  • If G is a skeleton of F and if G contains no
    destructible point, then we say that G is an
    ultimate skeleton of F

28
Ultimate skeleton 1D example
29
Ultimate skeleton illustration
30
Ultimate skeleton illustration
31
Ultimate skeleton 2D example
Original image F
Ultimate skeleton G of F
Regional minima of F (white)
Regional minima of G (white)
32
Thinness
  • In 1D, the set of non-minimal points of an
    ultimate skeleton is  thin  (a set X is thin if
    it contains no interior point). Is it always true
    in 2D ?
  • The answer is no, as shown by the following
    counter-examples.

33
Thinness
3
3
3
3
3
3
3
3
3
1
1
1
1
3
3
3
3
3
1
1
1
1
1
1
1
1
1
1
1
3
3
3
3
3
1
1
1
1
1
1
1
1
1
3
3
3
1
3
3
2
3
3
3
3
3
3
3
3
3
1
1
1
1
1
1
1
1
1
3
3
3
1
3
3
1
1
1
1
1
1
1
1
1
1
3
3
3
3
3
1
1
1
1
1
1
1
1
1
1
3
3
3
3
3
1
1
1
1
1
1
3
3
3
3
3
3
3
3
3
34
Thinness
3
3
3
3
3
3
3
3
3
3
3
3
3
3
1
1
1
1
1
1
1
1
1
1
1
1
1
1
3
3
3
3
3
3
3
3
2
2
1
1
1
1
1
1
1
1
1
1
1
3
3
3
3
3
3
3
2
1
2
1
1
1
1
1
1
1
1
1
3
3
3
3
3
3
2
2
1
2
1
1
1
1
1
1
1
1
1
3
3
3
3
3
3
2
2
1
2
2
1
1
1
1
1
1
1
1
1
3
3
3
3
3
1
3
2
1
1
1
1
1
1
3
3
3
3
3
3
3
3
3
3
3
3
1
1
1
1
1
1
1
1
1
1
1
1
1
3
3
2
3
3
1
1
1
1
1
1
1
1
1
1
2
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
35
Basic algorithm
Basic ultimate grayscale thinning(F) Repeat until
stability Select a destructible point p for F
F(p) F(p) 1 Inefficient O(n.g), where
n is the number of pixels g is the maximum gray
level
36
Lowest is best
  • The central point is destructible
    it can thus be lowered down to 5
    without changing the topology.
  • It can obviously be lowered more
  • down to 3 (since there is no value between 6 and
    3 in the neighborhood)
  • down to 1 (we can check that once at level 3, the
    point is still destructible)

3
1
1
9
6
1
9
9
9
37
Two special values
  • If p is destructible, we define
  • ?-(p)highest value strictly lower than F(p)
    in the neighborhood of p
  • ?-(p)lowest value down to which F(p) can
    be lowered without changing the topology

Here ?-(p)3 ?-(p)1
3
1
1
9
6
1
9
9
9
38
Better but not yet good
  • If we replace F(p) F(p) 1 in the basic
    algorithm by F(p) ?-(p), we get a faster
    algorithm. But its complexity is still bad. Let
    us show why

39
Fast algorithm
Fast ultimate grayscale thinning(F) Repeat until
stability Select a destructible point p for F
of minimal graylevel F(p)
?-(p) - Can be efficiently implemented thanks to
a hierarchical queue- Execution time roughly
proportional to n (number of pixels)
40
Complexity analysis open problem
3
3
3
3
3
3
3
3
3
3
3
3
3
3
1
1
1
1
1
1
1
1
1
1
1
1
1
1
3
3
1
1
1
1
1
1
1
1
1
1
1
3
3
4
4
4
1
1
1
1
1
1
1
1
1
3
3
4
4
1
1
1
1
1
1
1
1
1
3
3
4
4
1
1
1
1
1
1
1
1
1
3
3
4
4
1
1
1
1
1
1
4
3
3
1
1
1
1
4
3
3
2
4
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
3
3
1
1
1
1
1
1
1
1
1
1
1
1
2
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
41
Non-homotopic operators
  • Topology preservation strong restriction

over segmentation
  • Our goal Change topology in a controlled way

regional minima ? ? segmented regions
42
Altering the topology
  • Control over topology modification.
  • Criteria
  • Local contrast notion of ?-skeleton
  • Regional contrast regularization
  • Size topological filtering
  • Topology crest restoration

43
?-destructible point
not ?-destructible
?-destructible
?
?
?
Illustration (1D profile of a 2D image)
44
?-destructible point
  • Definition
  • Let X be a set of points, we define
    F-(X)minF(p), p in X
  • Let ? be a positive integer
  • A destructible point p is ?-destructible
  • A k-divergent point p is ?-destructible if at
    least k-1 connected components ci (i1,,k-1) of
    N--(p) are such that F(p) - F-(ci) ? ?

45
?-skeleton examples
46
Topological filtering
C reconstruction of B under A
B thinning peak deletion

47
Topological filtering (cont.)
Original image
48
Topological filtering (cont.)
Homotopic thinning (n steps)
49
Topological filtering (cont.)
Peak deletion
50
Topological filtering (cont.)
Homotopic reconstruction
51
Topological filtering (cont.)
Final result
52
Topological filtering (cont.)
  • Comparison with other approaches (median filter,
    morphological filters) better preservation of
    thin and elongated features

53
Crest restoration
  • Motivation

Thinning thresholding
Gradient
Original image
54
Crest restoration (cont.)
  • p is a separating point if
  • there is k such that T(p, Fk)2
  • p is extensible if
  • p is a separating point, and
  • p is a constructible or saddle point, and
  • there is a point q in its neighborhood that is an
    end point or an isolated point for Fk, with
    kF(p)1

50
0
0
50
240
240
240
50
50
0
60
0
50
240
50
50
60
40
0
50
240
50
50
90
40
40
60
50
50
50
90
60
40
0
50
50
50
50
0
90
0
50
50
50
90
0
0
0
50
50
50
90
0
0
0
50
50
50
0
0
0
50
240
50
50
0
0
0
50
240
50
50
0
0
0
50
240
50
0
0
50
240
240
240
55
Crest restoration (cont.)
  • p is a separating point if
  • there is k such that T(p, Fk)2
  • p is extensible if
  • p is a separating point, and
  • p is a constructible or saddle point, and
  • there is a point q in its neighborhood that is an
    end point or an isolated point for Fk, with
    kF(p)1

50
0
0
50
240
240
240
50
50
0
60
0
50
240
50
50
60
40
0
50
240
50
50
90
40
40
60
50
50
50
90
60
40
0
50
50
50
50
0
90
0
50
50
50
90
0
0
0
50
50
50
90
0
0
0
50
50
50
0
0
0
50
240
50
50
0
0
0
50
240
50
50
0
0
0
50
240
50
0
0
50
240
240
240
56
Crest restoration (cont.)
50
0
0
50
50
0
0
50
240
240
240
240
240
240
50
0
0
50
240
240
240
50
50
0
60
0
50
50
50
0
60
0
50
240
240
50
50
0
60
0
50
240
50
60
0
50
50
40
50
60
0
50
50
40
240
240
50
60
0
50
50
40
240
50
40
60
50
50
40
50
40
60
50
50
40
240
240
50
40
60
50
50
40
240
50
60
0
50
50
40
50
60
0
50
90
50
40
50
60
0
50
50
40
240
240
50
50
50
0
0
50
50
50
50
0
90
0
50
90
50
50
50
0
0
50
240
50
50
0
0
50
0
240
50
50
0
0
50
90
0
50
50
0
0
50
0
240
50
0
0
50
50
0
50
0
0
50
50
0
240
240
50
0
0
50
50
0
240
50
0
0
50
50
0
50
0
0
50
50
0
240
240
50
0
0
50
50
0
240
50
50
0
0
0
50
50
50
0
0
0
50
240
240
50
50
0
0
0
50
240
50
50
0
0
0
50
50
50
0
0
0
50
240
240
50
50
0
0
0
50
240
50
0
0
50
50
0
0
50
240
240
240
240
240
240
50
0
0
50
240
240
240
57
(No Transcript)
58
Crest Restoration result
Significant crests have been highlighted (in
green)
Before crest restoration
After crest restoration
59
Crest restoration (cont.)
Gradient
60
Crest restoration (cont.)
Thinning crest restoration thresholding (1
parameter)
Thinning hysteresis thresholding (2 parameters)
Thinning hysteresis thresholding (2 parameters)
61
Conclusion
  • Strict preservation of both topological and
    grayscale information
  • Combining topology-preserving and
    topology-altering operators
  • Control based on several criteria (contrast,
    size, topology)

62
Perspectives
  • Study of complexity
  • Extension to 3D
  • Topology in orders (G. Bertrand)

63
References
  • G. Bertrand, J. C. Everat and M. Couprie "Image
    segmentation through operators based upon
    topology", Journal of Electronic Imaging, Vol. 6,
    No. 4, pp. 395-405, 1997.
  • M. Couprie, F.N. Bezerra, Gilles Bertrand
    "Topological operators for grayscale image
    processing", Journal of Electronic Imaging,
    Vol. 10, No. 4, pp. 1003-1015, 2001.
  • www.esiee.fr/coupriem/Sdi/publis.html
Write a Comment
User Comments (0)
About PowerShow.com