Data Mining KDD Data Mining Data Mining - PowerPoint PPT Presentation

1 / 35
About This Presentation
Title:

Data Mining KDD Data Mining Data Mining

Description:

Data Mining KDD Data Mining Data Mining DataBase Data Mining Data Mining Data Mining ... – PowerPoint PPT presentation

Number of Views:407
Avg rating:3.0/5.0
Slides: 36
Provided by: bidmStat
Category:
Tags: kdd | data | mining

less

Transcript and Presenter's Notes

Title: Data Mining KDD Data Mining Data Mining


1
(No Transcript)
2
Data Mining
3
??
  • ??
  • ??Data Mining
  • ?????KDD?Data Mining???
  • Data Mining?DataBase
  • Data Mining???
  • Data Mining???
  • Data Mining????
  • ????
  • Data Mining??
  • Data Mining??
  • ????
  • ??

4
??Data Mining?
  • ???????????,???(Trend)???(Pattern)????(Relationshi
    p)?
  • KDD?????
  • ????????????????????

5
Data Mining???????
  • Database systems, Data Warehouses, OLAP
  • Machine learning
  • Statistical and data analysis methods
  • Visualization
  • Mathematical programming
  • High performance computing

6
(No Transcript)
7
?????KDD?data Mining???
  • ????(Data Warehouse)
  • ???????????????
  • KDD(Knowledge Discovery in Database)
  • ??????????????
  • ????(data Mining)
  • ??KDD????????

8
(No Transcript)
9
Data Mining? DataBase
  • Data preparation ??Data mining??70
  • ?????
  • ?Data base?? Data mining?
  • ???????

10
(No Transcript)
11
(No Transcript)
12
(No Transcript)
13
(No Transcript)
14
Data Mining???
  • ??(classification)
  • ??(estimation)
  • ??(prediction)
  • ????(affinity grouping)
  • ????(clustering)

15
Data Mining ???
  • ??--?????
  • ??????
  • ??????
  • ????????
  • ???????
  • ??????
  • ????????
  • ??????
  • ????????
  • ????
  • NBA??,????????
  • ?????????
  • ??????

16
Data Mining ????
  • 1.??????????
  • 2.?????????(Acquisition)
  • 3.???????(Integration and checking)
  • 4.???????????(Data cleaning)
  • 5.???????(Model and hypothesis development)
  • 6.????????
  • 7.???????????(Testing and verfication)
  • 8.???????(Interpretation and use)

17
????
  • ??Safeway
  • MCI????
  • US West??
  • UltraGem??
  • Wal-MartStores??

18
  • ??Safeway
  • ????
  • ?? Safeway ????????????,??????????,?????????
    ?????
  • ????
  • ????????????,??????????????????????,????????
    ?? ?

19
  • ????
  • ????????,????????????
  • ?????????????????,?? ?????????????
  • ?? Safeway ???????????????????????????,???????????
    ??
  • ????
  • ???????????,??????????????????,????????????500?
    ??????????????? ?

20
  • ????
  • ??IBM Intelligent Miner ?????????? ?
  • ?????????,?????150?????? Association
    ????????????,????????????? ?
  • ????
  • ?? Data Mining ???,??????????????????
  • ?????????????????209,????????????25?????????
  • ???28????????,?8????????????????????????,?????????
    ???????

21
  • ???????????????????,?????Data Mining ?? Sequence
    Discovery ???,??????????????
  • ??????????????????????,Safeway???????????????????,
    ??????????????????,?????

22
Data Mining??
  • Data Miming??????????????????????(Model),??????
    ?????????(Patterns)????(Relations)??????????
  • ??,?????????????????????????
  • ??,????????????? ?

23
Data Mining ????????
  • Classification
  • Regression
  • Time Series
  • Clustering
  • Association
  • Sequence

24
  • Classification
  • ?????????????,?????????
  • Logistic Regression
  • Discriminant Analysis
  • Neural Nets
  • Decision Tree

25
  • Decision Tree

26
  • Regression
  • ?????????????????????????
  • Time-Series Forcasting
  • ???????????????,Time-Series Forcasting????????????
    ????????
  • Clustering
  • ????????,?????????????????,?????????????????????

27
  • Association
  • ???????????????????????
  • Sequence Discovery
  • ?Association?????,?????Sequence
    Discovery????Item????????

28
Data Mining ??
  • MLC (pd)
  • MOBAL (pd)
  • MOBAL (pd)
  • Emerald (rp)
  • Kepler (rp)
  • Clementine (cp)
  • DataMind DataCruncher (cp)
  • Darwin (cp)
  • Intelligent Miner (cp)
  • INSPECT (cp)
  • NeoVista Solutions (cp)
  • Nuggets (cp)
  • Partek (cp)
  • Polyanalyst (cp)
  • SAS Data Mining (cp)
  • Statiatica
  • SGI MindSet (cp)
  • Knowledge Explorer (cp)
  • DataEngine (cp)
  • Delta Miner (cp)
  • S-PLUS (cp)
  • MATLAB (cp)
  • Mathematica (cp)
  • XGOBI (pd)
  • Crystal Vision neé ExplorN
  • sphinxVision
  • Graf-FX
  • IRIS
  • Spotfire
  • Netmap
  • Visible Decisions Inc.
  • Visual Mine

29
????
  • Other Information
  • Knowledge Discovery Nuggets
  • http//www.kdnuggets.com/index.html
  • subscribe_at_kdnuggets.com
  • with subscribe kdnuggets in body
  • Data Mining and Knowledge Discovery
  • http//www.wkap.nl/journalhome.htm/1384-5810
  • First issue available on line

30
  • Other Relevant Journals
  • IEEE Transactions on Knowledge and Data
    Engineering
  • http//computer.org/tkde/
  • Intelligent Data Analysis journal (Elsevier).
  • http//www-east.elsevier.com/ida/Menu.html
  • Journal of Intelligent Information Systems
    (Kluwer)
  • http//isse.gmu.edu/JIIS

31
  • Special Issues
  • IEEE Transactions Knowledge and Data Engineering
    8(6),December 1996, Special Section On Mining Of
    Databases
  • Communications of ACM Special Issue on Data
    Mining, Nov 1996
  • IEEE Expert Special issue on data mining, October
    1996.
  • Computational Intelligence Special Issue on Rough
    Sets and Knowledge Discovery, March 1995.
  • Journal of Intelligent Information Systems (JIIS)
    Special issue on KDD, volume 4, number 1, Jan
    1995.

32
  • Data Sets
  • The Machine Learning Database Repository
  • http//www.ics.uci.edu/AI/ML/Machine-Learning.html
  • The Neural Nets Benchmarking Homepage
  • http//wwwipd.ira.uka.de/prechelt/NIPS-bench.html
  • Information Exploration Shootout
  • http//iris.cs.uml.edu8080/

33
??
  • ???????Data Mining,????????????Data Mining?
  • Data Mining????????,???????????,???????????
  • ?????Data Mining??,????????????

34
APPENDEX What role does statistics
will play in data mining?
  • Statisticians can play a variety of roles.
  • Statisticians need to think about broad issues as
    well as methodological advances.
  • Statisticians need to stay involved
  • If not us, who? Everyone!

35
  • The New Statistics Paradigm at GE
  • Everyone uses statistical tools these tools are
    not owned by statisticians.
  • Financial/service applications are becoming more
    important than manufacturing and RD
    applications.
  • Statistical Thinking is becoming more important
    than statistical methods (attacking unstructured
    problems versus knowing how to do a regression,
    DOE, etc.).
  • Statisticians are still needed and valued, but
    not to analyze data - people do that for
    themselves. Professional statisticians are
    leaders, not just doers. The role is now
    significantly different!
  • Emphasis on broad application of basic tools
    versus narrow application of advanced tools.
Write a Comment
User Comments (0)
About PowerShow.com