Title: CHAOS
1CHAOS
- Lucy Calvillo
- Michael Dinse
- John Donich
- Elizabeth Gutierrez
- Maria Uribe
2Problem Statement
- Consider the function f(x)ax(1-x) on
the interval 0,1 where a is a real number 1
lt a lt 5 - This function is also known as the logistic
function.
3Logistic Function and the unrestricted growth
function
- The model for unrestricted growth is very
simple f(x) ax - For an example using flies this means that in
each generation there will be a times as many
flies as in the previous generation.
4Logistic Function and the restricted growth
function
- In 1845 P.F Verhulst derived a model of
restricted growth. - The model is derived by supposing the factor a
decreases as the number x increases. - The biggest population that the environment will
support is x1. - For our example if there are x insects then 1-x
is a measure of the space nature permits for
population growth. - Consequently replacing a by a(1-x) transforms the
model to f(x) ax(1- x) which is the
initial equation we were given.
5Problem Statement
- Compute the fixed points for the function
f(x)ax(1-x) on the interval
0,1 where a is a real number 1 lt a lt 5
6Fixed Points
- A fixed point is a point which does not change
upon application of a map, system of differential
equations, etc. - The fixed points can be obtained graphically as
the points of intersection of the curve f(x) and
the line y x. - The fixed points of the logistic function are 0
and (a -1) / a.
7Problem Statement
- Compute the first twenty values of the sequence
given by xn1 f(xn) Using the
starting values of x00.3
x00.6 x00.9 For a 1.5, 2.1, 2.8,
3.1 3.6
8Iterations
- Iteration making repititions, iterations are
functions that are repeated. For instance the
first iteration yields xn1 f(xn) f(x)
ax (1-x) x1 f(0.3) x1 (1.5)(0.3)(1-0.3)
x1 0.315 - Iterations allowed us to compare the convergence
behavior.
9a 1.5 x00.3
0.3 0.315 0.3236625 0.328357629 0.330808345 0
.332061276 0.332694877 0.333013494 0.33317326
0.333253258 0.333293286 0.333313307 0.33332332
0.333328326 0.33333083 0.333332082 0.333332707
0.33333302 0.333333177 0.333333255 0.33333329
4
10a 1.5 x00.6
0.6 0.36 0.3456 0.339241 0.336235 0.334771 0
.334049 0.333691 0.333512 0.333422 0.333378 0
.333356 0.333344 0.333339 0.333336 0.333335 0
.333334 0.333334 0.333334 0.333333 0.333333
11a 1.5 x00.9
0.9 0.135 0.175163 0.216721 0.254629 0.28469
0.305462 0.318233 0.325441 0.329294 0.331289
0.332305 0.332818 0.333075 0.333204 0.333269
0.333301 0.333317 0.333325 0.333329 0.333331
12a 2.1 x00.3
0.3 0.441 0.51769 0.524343 0.523756 0.523815
0.523809 0.52381 0.52381 0.52381 0.52381 0.5
2381 0.52381 0.52381 0.52381 0.52381 0.52381
0.52381 0.52381 0.52381 0.52381
13a 2.1 x00.6
0.6 0.504 0.524966 0.523691 0.523821 0.523808
0.52381 0.52381 0.52381 0.52381 0.52381 0.5
2381 0.52381 0.52381 0.52381 0.52381 0.52381
0.52381 0.52381 0.52381 0.52381
14a 2.1 x00.9
0.9 0.189 0.321886 0.458378 0.521362 0.524042
0.523786 0.523812 0.523809 0.52381 0.52381
0.52381 0.52381 0.52381 0.52381 0.52381 0.523
81 0.52381 0.52381 0.52381 0.52381
15a 2.8 x00.3
0.3 0.588 0.678317 0.610969 0.665521 0.623288
0.65744 0.630595 0.652246 0.6351 0.648895 0
.637925 0.646735 0.639713 0.645345 0.64085 0.
644452 0.641574 0.643879 0.642037 0.643511
16a 2.8 x00.6
0.6 0.672 0.617165 0.661563 0.626913 0.654901
0.632816 0.650608 0.636489 0.647838 0.638803
0.646055 0.64027 0.644908 0.641205 0.644171
0.641801 0.643699 0.642182 0.643396 0.642425
17a 2.8 x00.9
0.9 0.252 0.527789 0.697838 0.590409 0.677114
0.612166 0.664773 0.62398 0.656961 0.631017
0.651937 0.635363 0.648695 0.638091 0.646606
0.639818 0.645262 0.640917 0.644399 0.641617
18a 3.1 x00.3
0.3 0.651 0.704317 0.645589 0.709292 0.639211
0.714923 0.631805 0.721145 0.623394 0.727799
0.614133 0.734618 0.604358 0.741239 0.594592
0.747262 0.58547 0.752354 0.577584 0.75634
19a 3.1 x00.6
0.6 0.744 0.590438 0.749645 0.5818 0.754257
0.574595 0.75775 0.569051 0.760219 0.565087 0
.761868 0.562419 0.762922 0.560703 0.763577 0
.559634 0.763976 0.558982 0.764215 0.55859
20a 3.1 x00.9
0.9 0.279 0.623593 0.727647 0.614348 0.734466
0.60458 0.741095 0.594806 0.747136 0.585663
0.752252 0.577744 0.756263 0.571421 0.759187
0.566748 0.761189 0.56352 0.762492 0.561403
21a 3.6 x00.3
0.3 0.756 0.66407 0.803091 0.569288 0.882717
0.3727 0.841661 0.479763 0.898526 0.328238 0
.793792 0.58927 0.871311 0.403661 0.866588 0.
416209 0.874724 0.394494 0.859926 0.433631
22a 3.6 x00.6
0.6 0.864 0.423014 0.878664 0.38381 0.8514 0
.455466 0.89286 0.344379 0.812816 0.547727 0.
8918 0.347375 0.81614 0.5402 0.894182 0.34063
3 0.808568 0.557228 0.88821 0.357455
23a 3.6 x00.9
0.9 0.324 0.788486 0.600392 0.863717 0.423756
0.879072 0.382695 0.850462 0.457835 0.893599
0.342286 0.810455 0.553025 0.889878 0.352782
0.821977 0.526792 0.897416 0.331418 0.797689
24Problem Statement
- Compute f(x) and explain the behavior
25f(x) ax(1-x) f(x) ax - ax2 f (x) a - 2ax f
(x) a (1 - 2x)
By evaluating the derivative at the fixed point
(x) it can be determined
- Where f (x) m, for
- m lt -1, the iterative path is repelled and
spirals away from fixed point - -1 lt m, the iterative path is attracted and
spirals into the fixed point - 0 lt m lt1, the iterative path is attracted and
staircases into the fixed point - m gt1, the iterative path is repelled and
staircases away
26Problem Statement
- Consider g(x) f(f(x)) and compute all fixed
points.
27g(x) f(f(x))
- f(x)ax - ax2 f(f(x))a(ax - ax2) - a(ax -
ax2)2 g(x) f(f(x)) g(x) a(ax - ax2)
- a(ax - ax2)2 - The fixed points of the function
are 0 (a - 1) / a 1/2 1/2a
1/2a (a2 - 2a - 3)0.5 - The first two fixed points are the same as those
computed for the general logistic function. - The two new fixed points are the numerical values
of the orbit of convergence.
28Problem Statement
- Investigate the sequence xn1 g(xn) for the
values of Using the starting values of
x00.3 x00.6 x00.9 For
a 1.5, 2.1, 2.8, 3.1 3.6
29a 1.5 x00.3
0.3 0.3236625 0.330808345 0.332694877 0.333173
26 0.333293286 0.33332332 0.33333083 0.3333327
07 0.333333177 0.333333294 0.333333324 0.33333
3331 0.333333333 0.333333333 0.333333333 0.333
333333 0.333333333 0.333333333 0.333333333 0.3
33333333
30a 1.5 x00.6
0.6 0.3456 0.336235 0.334049 0.333512 0.33337
8 0.333344 0.333336 0.333334 0.333334 0.33333
3 0.333333 0.333333 0.333333 0.333333 0.33333
3 0.333333 0.333333 0.333333 0.333333 0.33333
3
31a 1.5 x00.9
0.9 0.175163 0.254629 0.305462 0.325441 0.331
289 0.332818 0.333204 0.333301 0.333325 0.333
331 0.333333 0.333333 0.333333 0.333333 0.333
333 0.333333 0.333333 0.333333 0.333333 0.333
333
32a 2.1 x00.3
0.3 0.51769 0.523756 0.523809 0.52381 0.52381
0.52381 0.52381 0.52381 0.52381 0.52381 0.5
2381 0.52381 0.52381 0.52381 0.52381 0.52381
0.52381 0.52381 0.52381 0.52381
33a 2.1 x00.6
0.6 0.524966 0.523821 0.52381 0.52381 0.52381
0.52381 0.52381 0.52381 0.52381 0.52381 0.5
2381 0.52381 0.52381 0.52381 0.52381 0.52381
0.52381 0.52381 0.52381 0.52381
34a 2.1 x00.9
0.9 0.321886 0.521362 0.523786 0.523809 0.523
81 0.52381 0.52381 0.52381 0.52381 0.52381 0
.52381 0.52381 0.52381 0.52381 0.52381 0.5238
1 0.52381 0.52381 0.52381 0.52381
35a 2.8 x00.3
0.3 0.678317 0.665521 0.65744 0.652246 0.6488
95 0.646735 0.645345 0.644452 0.643879 0.6435
11 0.643276 0.643125 0.643029 0.642967 0.6429
27 0.642902 0.642886 0.642876 0.642869 0.6428
65
36a 2.8 x00.6
0.6 0.617165 0.626913 0.632816 0.636489 0.638
803 0.64027 0.641205 0.641801 0.642182 0.6424
25 0.642581 0.64268 0.642744 0.642785 0.64281
1 0.642827 0.642838 0.642845 0.642849 0.64285
2
37a 2.8 x00.9
0.9 0.527789 0.590409 0.612166 0.62398 0.6310
17 0.635363 0.638091 0.639818 0.640917 0.6416
17 0.642064 0.64235 0.642533 0.64265 0.642724
0.642772 0.642803 0.642822 0.642835 0.642843
38a 3.1 x00.3
0.3 0.704317 0.709292 0.714923 0.721145 0.727
799 0.734618 0.741239 0.747262 0.752354 0.756
34 0.759241 0.761225 0.762515 0.763326 0.7638
24 0.764124 0.764304 0.764411 0.764475 0.7645
12
39a 3.1 x00.6
0.6 0.590438 0.5818 0.574595 0.569051 0.56508
7 0.562419 0.560703 0.559634 0.558982 0.55859
0.558355 0.558216 0.558133 0.558085 0.558056
0.558039 0.558029 0.558023 0.558019 0.558017
40a 3.1 x00.9
0.9 0.623593 0.614348 0.60458 0.594806 0.5856
63 0.577744 0.571421 0.566748 0.56352 0.56140
3 0.560067 0.559245 0.558748 0.558449 0.55827
2 0.558166 0.558104 0.558067 0.558045 0.55803
3
41a 3.6 x00.3
0.3 0.66407 0.569288 0.3727 0.479763 0.328238
0.58927 0.403661 0.416209 0.394494 0.433631
0.368764 0.488727 0.325317 0.596929 0.417292
0.392741 0.437104 0.364284 0.499137 0.324008
42a 3.6 x00.6
0.6 0.423014 0.38381 0.455466 0.344379 0.5477
27 0.347375 0.5402 0.340633 0.557228 0.357455
0.515405 0.326458 0.593934 0.411851 0.401746
0.419743 0.388846 0.444977 0.354961 0.521457
43a 3.6 x00.9
0.9 0.788486 0.863717 0.879072 0.850462 0.893
599 0.810455 0.889878 0.821977 0.897416 0.797
689 0.876396 0.856419 0.88817 0.826966 0.8991
75 0.791473 0.868084 0.87228 0.864764 0.87753
8
44Conclusions
45Work Cited
- http//www.ukmail.org/oswin/logistic.html
- http//www.cut-the- knot.com/blue/chaos.shtml