Title: ECE 501
1ECE 501
- Session 9
- Dr. John G. Weber
- KL-241E
- 229-3182
- John.Weber_at_notes.udayton.edu
- jweber-1_at_woh.rr.com
- http//academic.udayton.edu/JohnWeber
2Multiplication
- Fixed Point
- Unsigned
- Signed
- Floating Point
3Fixed Point Unsigned Multiplication
- Similar to algorithm used to multiply by hand
- Multiplying two n-bit numbers can result in a
2n-bit product
4Combinatorial Multiplier
B1 B0 A1 A0
A0B1 A0B0 A1B1
A1B0 _____________________________ S3
S2 S1 S0
NOTE S0 A0B0 S1 A0B1
A1B0 S2 A1B1A0B1
A1B0 S3 A1B1A0B1
A1B0
5Combinatorial Multiplier
6Sequential MultiplierHardware Implementation of
Unsigned Multiply
7Multiply Process
- Clear A and C
- Put multiplicand in M and multiplier in Q
- If q0 is one, add multiplicand to A, then shift
C,A,Q to right (fill C with a zero from the left) - Continue process until n steps (four in example)
have been completed - n is the number of bits in the multiplier
Multiplicand 1101 Initial Value
C A Q 0
0000 1011 Initial
Value n 4 0 1101
1011 Add M to A 0
0110 1101 Shift Right one
position n 3 1 0011
1101 Add M to A 0 1001
1110 Shift Right one position n 2
0 0100 1111 Shift Right one
position (No Add) n 1 1
0001 1111 Add M to A 0
1000 1111 Shift Right one position (A,Q
contains product) n 0
8Verilog (Note This code is not fully debugged)
//mul_4_u.v //unsigned 4 bit multiplier module
mul_4_u(Min, Qin,Prod,strt, clk) parameter
width 4, count4 input strt, clk input
width-10 Min, Qin output 2width-10
Prod reg width-10 M,A,Q,Cnt reg
2width-10 Prod reg C
9Verilog (cont)
always _at_(posedge clk or posedge strt) if
(strt) begin M Min //note use of
blocking operators A 4'b0000 Q
Qin Cnt 4'b0100 C 0
end else if (Cnt ! 0) case
(Q0) 0 begin
Awidth-10,Qwidth-10C,Awidth-10,Qwid
th-11 C0 Cnt Cnt-1
end 1 begin C,A M
A Awidth-10,Qwidth-10C,Awidth-10
,Qwidth-11 C0 Cnt Cnt-1
end endcase else Prod
Awidth-10,Qwidth-10 endmodule
10Simulation
11Signed Multiplication
- Approach 1
- Use unsigned multiplier
- Sign of answer is XOR of signs of multiplicand
and multiplier - Complement negative numbers and multiply as
unsigned - Add sign bit at end
- Approach 2
- Extend multiplier to work with twos complement
numbers directly - Extend sign of negative numbers to full width
- Multiply as before
- Retain rightmost n bits
12Example
1111 (-1)10 0001 (1)10 1111
0000 0000 0000 00001111
(15)10
11111111 (-1)10 0001 (1)10 11111111 00000
00 000000 00000 11111111 (-1)10
13Using the previous hardware
Multiplicand 1111 Initial Value
C A Q 1
0000 0001 Initial Value
1 1111 0001 Add M to
A 1 1111
1000 Shift Right one position 1
1111 1100 Shift Right one position
1 1111 1110 Shift Right one
position (No Add) 1 1111
1111 Shift Right one position (A,Q contains
product)
Works by shifting in sign bit of multiplicand
14Timing
- This algorithm requires a maximum of n shifts and
n adds or 2n total operations - Speed up by parallel multiplier or rework
algorithm - Rework Approaches
- Booth
- Shifts over ones
- String of ones in the multiplier from bit u to
bit v - Equivalent to 2u1 2v
- booth algorithm recodes the multiplier to this
form
15Example
010101 (21)10 Multiplicand 001110 (14)10
Multiplier 010010 Booth Recoded
Multiplier 111111010110 (-21x2)10 00010101000
0 (21x16)10 000100100110 (294)10
Shift
Add
Subtract
16Booths Algorithm
- Works for twos complement numbers
- Does not always reduce the number of operations
- Can compensate by encoding multiple bits
- Worst case n shifts and n/2 adds/subtracts or 1.5
n operations
17Floating Point Numbers
S
Exponent
Fraction
- S is the sign of the number
- Exponent is the power of 2 to multiply the
fraction by to get the number - Fraction contains the significant bits of the
number, normalized to have a non-zero leading bit
18Exponents
- Exponents may be positive of negative
- Offset notation is most widely used
- e.g. An 8-bit exponent field may contain numbers
between 0 and 255 - IEEE Single Precision Format
19Floating Point Operations
- Addition and Subtraction
- Adjust fractions and exponents so that exponents
are equal - Add or subtract fractions
- Normalize result
- Multiplication
- Compute sign of result, multiply fractions and
add exponents - Normalize result
- Division
- Compute sign of result, divide fractions,
subtract exponents - Normalize result