Title: Face Categorization using SIFT features
1Face Categorization using SIFT features
- Mei-Chen (Mei) Yeh
- ECE 281B
- 06/13/2006
2Bush vs Schwarzenegger
3Serena Williams vs Venus Williams
4Main goal
- Face categorization problem
- Object class recognition techniques have seen
progress in recent years (ex bag-of-words
models) - Different people are considered different object
classes - Integration of SIFT features
- Does SIFT help face recognition? To what degree?
- Target on a few people
- Applications
- Face annotation in family albums
- Name-based photo search
5Method
- Features SIFT
- Bag-of-words representation for faces
- Each SIFT feature is considered a codeword
- Build a dictionary based on training samples
- Each face is represented as a histogram over
codewords - Learning Naïve Bayes Classifiers
6codeword 2
codeword 1
SIFT feature vectors from training samples
codeword 3
128-d feature space
7Datasets
- The BioID Face Database (simple)
- 1521 images with 23 people
- Variety of illumination, background and face size
822 categories, 1613 images 70 for training, 30
for testing
9Measurement
Classifiers
Categories
Average Categorization Rate
101 2 3 4 5 6 7 8
9 10 11 12 13 14 15 16 17 18
19 20 21 bg
Average 89.14
11Datasets
- http//www.cs.berkeley.edu/millert/faces/faceDict
/NIPSdict/
- Faces in the Wild (challenging)
- 851 images, 10 people 1 non-faces
- Extracted from news videos
1211 categories, 851 images 70 for training, 30
for testing
1381.82 0.00 0.00 0.00 0.00 4.55
4.55 0.00 4.55 4.55 0.00 0.00
83.33 0.00 0.00 0.00 0.00 8.33
8.33 0.00 0.00 0.00 4.00 4.00
68.00 0.00 4.00 16.00 4.00 0.00
0.00 0.00 0.00 20.00 0.00 0.00
80.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 8.00 0.00 0.00 8.00
68.00 12.00 0.00 4.00 0.00 0.00
0.00 0.00 0.00 7.14 0.00 0.00
85.71 0.00 7.14 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00
100.00 0.00 0.00 0.00 0.00 0.00
9.09 9.09 0.00 0.00 4.55 0.00
77.27 0.00 0.00 0.00 0.00 4.76
0.00 0.00 0.00 0.00 0.00 0.00
85.71 9.52 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 8.33 8.33
83.33 0.00 0.00 2.44 2.44 2.44
2.44 0.00 0.00 0.00 2.44 0.00
87.80
Average 81.91
14Conclusions
- SIFT features bag-of-words representation might
work for face recognition - Simple dataset good
- Challenging dataset may be improved
- Consider the spatial relations between features
may be the next step to improve the performance