Spectrometrists Prefer Purity - PowerPoint PPT Presentation

1 / 22
About This Presentation
Title:

Spectrometrists Prefer Purity

Description:

Retention time Identification (not unique) Intensity Abundance (Interferences) (Process) GC/MS. J.T. Watson, Introduction to Mass Spectrometry, Raven: New York, 1986. ... – PowerPoint PPT presentation

Number of Views:35
Avg rating:3.0/5.0
Slides: 23
Provided by: kelsey2
Category:

less

Transcript and Presenter's Notes

Title: Spectrometrists Prefer Purity


1
Spectrometrists Prefer Purity
2
Process GC
6min
3
Process GC Information
  • Retention time ? Identification
  • Intensity ? Abundance

4
Process GC Caveats
  • Retention time ? Identification (not unique)
  • Intensity ? Abundance (Interferences)

5
(Process) GC/MS
6
Mass spectrum a compounds fingerprint
of acetone
J.T. Watson, Introduction to Mass Spectrometry,
Raven New York, 1986.
7
Electrospray Mass Spectrometry
Kebarle and Tang, Anal. Chem.1993, 65, 972A.
8
J.T. Watson, Introduction to Mass Spectrometry,
Raven New York, 1986.
9
Deconvolution Without Separation
J.T. Watson, Introduction to Mass Spectrometry,
Raven New York, 1986.
10
Process GC vs Process MS
  • Separation based on differences in solubility.
  • 20 minutes for 8-10 compounds.
  • Long instrument dead bands.
  • Separation based on molecular weight and
    fingerprint.
  • Up to 40 compounds or 64 masses in
  • Real time. Virtually no instrument dead bands.

11
Process Mass Spectrometry
  • Well suited to processes monitored by
    chromatographs (GC volatiles LC
    nonvolatiles via evolving electrospray
    technology)
  • Faster than chromatography (seconds per analysis)
    with good accuracy and precision
  • More information than gc
  • Easy to multiplex
  • Robust? (Much better than in the past!)

12
Methanol
Benzene
100
100
80
80
Relative Intensity (A.U.)
60
60
Relative Intensity (A.U.)
40
40
20
20
0
0
10
20
30
40
50
60
70
80
10
20
30
40
50
60
70
80
m/z
m/z
Methanol/Benzene
100
80
60
Relative Intensity (A.U.)
40
20
0
10
20
30
40
50
60
70
80
m/z
13
Process MS Typical ExampleEthylene Oxide
streamMeans for 100 samples
  • Nitrogen 53.43 0.0502
  • Ethylene Oxide 2.51 0.0059
  • Argon 0.37 0.0010
  • Methane 0.11 0.0041
  • Ethylene Chloride 0.03 0.02 ppm
  • Ethane 0.35 0.0029
  • CO2 5.80 0.0124
  • Ethylene 29.47 0.0339
  • O2 7.89 0.0125
  • Methyl Chloride 1.25 0.02 ppm

14
Butene Isomers
1-Butene
Isobutene
cis-2-Butene
trans-2-Butene
15
Mass Spectra of Butene Isomers
1-Butene
Isobutene
16
1-Butene in Isobutene
Using all 19 m/zs
17
Mass Spectra of Butene Stereoisomers
18
All Four Butenes (Non-optimum parameterization)
1
0.8
r2 0.033
0.6
Calculated mole fraction
0.4
0.2
0
0
0.2
0.4
0.6
0.8
1
Actual mole fraction
19
Simultaneous AnalysisAll Four
Butenes(Optimum parameterization)
r2 0.985 0.002
20
A multi-component gas stream with a pair of C4
isomers
  • Methane (CH4)
  • Ethane (C2H6)
  • Propane (C3H8)
  • Propylene (C3H6)
  • 1-Butene (C4H8)
  • Isobutylene (C4H8)

21
Six Component Stream
100
r20.9983
80
60
Calculated Concentration ()
40
20
0
0
20
40
60
80
100
Actual Concentration ()
22
Conclusions Process MS
  • Rapid simultaneous analysis - even of isomers -
    with good accuracy and precision.
  • Parameterization is critical.
  • Reliability has proven to be good.
  • Liquids are feasible, but more challenging.
  • Electrospray offers high-mass capabilities.
  • Widely used for monitoring headspace (e.g.,
    health monitoring in a fermentation reactor).
Write a Comment
User Comments (0)
About PowerShow.com