Title: Folie 1
1Institut für Anorganische und Angewandte Chemie
Dieter Rehder NMR 2 Polyoxometalates and
Biological Applications PICB Winter
School Shanghai 5th-10th March 2007
2Nuclei of interest in the context of
characterising polyoxometalates and modelling ion
transport
3Applications of 51V, 95Mo and 183W NMR
Characterising polyoxometalates
4Species differentiation by chemical shifts 51V
NMR of an aq. solution of 5 mM vanadate, pH 5.7
5H4V14PO425-
(Capped a-Keggin)
-506 (capping V)
1
1
1
-560, -582 (other V)
P
6H6V15O423-
(Capped a-Keggin)
-531 (2 capping VO5)
-584, -597 (VO6)
V -507
C. L. Hill, Chem. Commun. 1993, 426
7A host-guest system based on a polyoxovanadate,
stabilised by a large cation
Bu4N4MeCN?V12O32
d(51V) -590 (4V) -598 (4V) -606 (4V)
W.V. Day et al. JACS 111 (1989) 5959
8From Keggin to Dawson
1
1
3
3
2
2
Remove 1, 2 and 3, and fuse
9183W NMR spectra of Dawson-type polyoxotungstates
P2MoW17O62n-
P
P
P2W18O62n-
R. Contant, Inorg. Chem. 1991, 30, 1695
10183W NMR spectra of polyoxotungstates MnAs4W40O1
40(28-n)-
M
Line which is strongly cation-dependent
O. Howarth, in Polyoxometalates 1994, 167
11Variable temperature 95Mo NMR spectra (molybdate
at pH 6)
MoO42- ? HMo7O245-
49 C
39 C
30 C
19 C
4 C
A.G. Wedd, Aust. J. Chem. 1984, 37, 1825
12Applications of 7Li and 23Na NMR Modeling ion
transport by porous polyoxomolybdates
in cooperation with Prof. Achim Müller
(Bielefeld) and Dr. Erhard Haupt (Hamburg)
13Why Li ?
- Lithium salts are used in the treatment of
- Bipolar disorder (manic depression)
- high blood pressure (hypertension)
- lacking blood supply (ischaemic injury)
- Viral infections
How does Li act?
- Competition with Na and K (disturbance of the
Na/K balance) - Inhibition of Mg2 activated enzymes in signal
transduction (e.g. inositol-6-phosphatase) - Modulation of the activity of Mg2 dependent
enzymes in metabolic pathways (e.g. pyruvate
kinase)
147Li NMR - nuclear spin 3/2 - quadrupole
moment 4.5 fm2 - natural abundance 92.85 -
receptivity (1H 1) 0.6
157Li NMR of erythrocytes (red blood cells) in the
presence of
Li outside
Li inside
0
5
Li(H2O)4
16Paramagnetic shift reagent
Dy3, 4f9 5 unpaired electrons, magnetic moment
10.65 BM
17Cell membrane with cation ion channel
18Ion channel - details
blue Protein
Na, K
O2- (of carboxy-lates or carbonyl)
19Porous Polyoxomolybdates Models for cellular
cation transport
Me2H2N44Li28MoVI(MoVI5O21)(H2O)612MoV2O4(SO4)
30?200H2O
Diameter ca. 3 nm 20 pores (0.42 nm ? ) and
channels, one cavity (containing water cluster)
Effective pore radius ca. 0.6 Å
Mo132O372(H2O)72(SO4)3072-
20Detail from the outer surface (viewed from the
interior)
2 Mo9O9 rings are linked together by a central
Mo2 unit
21Detail from the outer surface, showing one of the
pores in a lateral view, with a Na attached to 3
sulfates and 3 water molecules
(towards cavity of the capsule)
Mo132O372(H2O)72(SO4)3072-
227Li NMR
in DMSO, concentration dependence
Li(dmso)x
Li?Mox
Li(H2O)4
Chem. Commun. 2005, 3912-3914
237Li-2D-EXSY NMR
Mixing time 1.5 ms
Li(dmso)x ? Li?Mox
Li
247Li-2D-EXSY NMR in the presence of guanidinium
cations
Li(dmso)x ? Li?Mox
25Li(dmso)x
7Li NMR in the presence of increasing amounts of
Dy3-triphosphate
no Dy3 added
External reference
267Li NMR
23Na NMR
x 10
? Increasing c(Na) ?
Chem. Asian J. 2006, 76
27Essentially the same behaviour is observed for
K, Rb and Ca2
Ionic radii (coord. number 6) /
Å _______________________________ Li Na K Rb C
s Ca2 0.78 0.98 1.33 1.49 1.64 1.06
from close packing ion volumes
28Replacement of Li by K
Li(dmso)n
Li?Mox
Increasing c(K)
29Ca2 completely removes Li from internal capsule
sites
(excess) Ca2 added
no Ca2
307Li NMR
in the presence of Cs no substantial exchange
Increasing c(Cs)
31Influence of water
Chem. Commun. 2005, 3912
Li(dmso/H2O)4 ? Li(H2O)x?Mox Equilibrium
accelerated by water
c(H2O)
2.5 M
0.26 M
0.16 M
dry
0.26 M (ca. 0.4)
32Summarising provisional assignments of lithium
sites