Title: SeiYoung Park
1Introduction of KMA data assimilation system with
FGAT
Sei-Young Park
KMA/Numerical Weather Prediction Division
2Contents
- Introduction of KMA NWP system
- KMA data assimilation system
- History and status
- (satellite data assimilation unified 3dvar)
- First Guess at Appropriate Time (FGAT)
- On-going plan
-
3Operational NWP model
4Implementation of global forecasting system
5Verification of Global model (T213L30 for
1998-2005.9 / RMSE of 500hPa )
6Data assimilation system
7On-going and Plan of data assimilation
8Thank you!
Numerical Weather Prediction Division, Korea
Meteorological Administration
9Direct Assimilation Algorithm for ATOVS
Structures
RTTOV version 7
ATOVS Radiance
QC, bias correction Thinning
1DVAR
1DVAR
Observation error(Joo Lee 2002)
Radiance departure
Incremental 3dVar
- Observation error
- RTM error and
- instrument error
- Square of innovation
- First estimates of
- Derber and Wu (1999)
- Background error
- in radiance space
10Results
Typhoon Track Forecast Error
Typhoon track forecast error is much reduced.
Reduction of error is about 200km at 72 hour
forecast.
G3VR DG3V
11Results of BIAS correction
One month averaged RMSE of 500hPa
- Experiments
- DG3V Direct assimilation 3dVar
- BIAS DG3V Bias correction is applied in the
stratospheric channels depending on the latitude
Bias correction is important to improve forecast
skill.
12Minimization of data number for QuikSCAT (Quality
Control)
13Change of basic fields due to QuikSCAT
14Verification of typhoon track
Songa Meari Maon
Tokage
15Unified 3dVar (U3VR)
- Motivation (2004)
- Common code share for global and regional DA
(observations, preconditioning, background error
statistics, minimization algorithm, observation
operator etc) - Man Power
- 2005
- Basic Performance Test for T213L30 and WRF
cycling - 2006
- Background error tuning
- Improvement of observation data processing ( Burf
format, QC ) - Introduction of satellite radiance
- Test on operational frame
- Starting 4DVAR on WRF model
16Comparison of R3VR, G3VR and U3VR
17Initial MSLP (00 UTC 18 May 2005)
SI (CNTL)
3h-Cycled U3dVR (2 day)
T426 (ANAL)
- U3dVar by continuous cycling gives the
reasonable initial MSLP pattern. - SI gives too small scaled MSLP by the topography.
18First Guess at Appropriate Time (FGAT)
- FGAT is a method to make an innovation with first
guess at appropriate time (observation time). - Normally in 3dvar weve considered the
observation data within the time window are
observed at the same time with first guess. ? It
can make an error! - - introduced by D. Vasiljevic (mid 1980s)
- - ECMWF reanalysis ERA-40
- - NCEP GSI
- - WRF FGAT
19How to make the first guess at appropriate time
WRF 3DVAR FGAT
-03 02 01 00 01
02 03
GDPS 3DVAR FGAT
-03 02 01 00 01
02 03
y
y
20Data processing
CDA (Comprehensive Database for Assimilation)
routine to process the observational data for
3DVAR
- D-value
- CTRL DVAL OBS-GUES
- FGAT DVAL OBS-(GUESGSDTDELT)
- Unify data which are the same position and
height - Priority maximum priority data
- Time difference the nearest data to anal
time - Observation error minimum observation error
data - D-value minimum D-value data
- QC good quality data , etc..
- ? FGAT skip this
algorithm except simultaneously happened data
21Processing time for 3dvar (20051115-20060109)
CNTL FGAT 02023 02124
Daily averaged data number (20051229-20060108)
18?
22In Time
NUMERICAL WEATHER PREDICTION DIVISION/KMA
23In Time
RADIA TION
NUMERICAL WEATHER PREDICTION DIVISION/KMA
24IV for ATOVS (2005.10.04.)
CTRL
FGAT
NUMERICAL WEATHER PREDICTION DIVISION/KMA
25KIROGI 2005-20 (2005.10.13.12.)
NUMERICAL WEATHER PREDICTION DIVISION/KMA
26RMSE for Analysis field (20051121-20051231)
FGAT gave somewhat positive impact.
27BIAS for Analysis field (20051121-20051231)
28J DJ
29(No Transcript)
30???? ???? (????? 1) ???-??? RD ?? ??
Next-generation KMA GSM
31???? ???? (????? 2) ???-??? RD ?? ????
32???? ???? (????? 3) ???-??? RD ?? ????
- ??? ?????? ?? 3?
- ?? ??? ?? ? ?? 4?-6?
- ?? ?? 7?
- ?? ? ?? 8-10?
- ?? ?? ? ???? ??? ?????? ???? 11?
- ???? ? ??? ??? ???? (T426) ??
- ?? ???? 3dVar? ?? ? 4dVar? ??
- KMA/YSU GDAPS ?? ??
33???? ???? (????)
- ??
- - ??? ??? ?????? WRF? ??
- - ?? ?? ?? ?? ??? ???? ????? ????? ???
- ???????? ?? ??
- - WRF ??? ?? ?? ?? ??
- ?? ??
- - WRF ??? ??? ?? ??
- - WRF ??? ?? ?? ??
- - RSL ??? ??? ??? ??? ?? CPU ? WRF ??? ??
- - ?? CPU ??? ???? WRF ?? ??
- - 4dVar ??
- ? ?????? ??, ??? ? ?? ??? ???????? KWRF (Korean
WRF) ??
34Table 2. Physical processes in global and
regional models at KMA.
Table 2. Physical processes in global and
regional models at KMA.
???? (??? vs. ??)
35?? ??
1. ??? ???? - ?? ??? ??? ?? ? ????? ?? ??
RD ?? ? ??? ??? ?? ??? ? RD ??? ?? ???
?? ? ?? ?? ? ?? T426 ??? ?? ?? 2. ?? ????
- RDAPS ?? KWRF ???? ?? ? 10km ???
? ???? 51??75?? ?? ? ???? ??? ?? ???? ??
? 4dVar ?? ? ?? ??? ?? ?? ? ?? ?? WRF
??? ?? ?? ??? ?? ?? ????? ???? ?? ??
363. ????? ???? ?? ? ???? ??? ?? - ??? ??????
?? ?? ? ???, ??? ?? ? ???? (T106L30 ?
T213L30 ? T213L40, 32 ??) - ??? ?? ?? ??
4. ????? ??? ?? - ????? 4dVar 5. ??? ??
??? ?? ??? - ?? ????? ??? ?? T426L40? ???
- ?? ????? ??? ?? 10km KWRF? ???