SeiYoung Park - PowerPoint PPT Presentation

About This Presentation
Title:

SeiYoung Park

Description:

(satellite data assimilation & unified 3dvar) First Guess at Appropriate Time (FGAT) ... Acquisition of new observation data (SSMI,QuikSCAT,Metar...) and QC ... – PowerPoint PPT presentation

Number of Views:59
Avg rating:3.0/5.0
Slides: 37
Provided by: emcNce
Category:
Tags: seiyoung | park | pattern

less

Transcript and Presenter's Notes

Title: SeiYoung Park


1
Introduction of KMA data assimilation system with
FGAT
Sei-Young Park
KMA/Numerical Weather Prediction Division
2
Contents
  • Introduction of KMA NWP system
  • KMA data assimilation system
  • History and status
  • (satellite data assimilation unified 3dvar)
  • First Guess at Appropriate Time (FGAT)
  • On-going plan

3
Operational NWP model
4
Implementation of global forecasting system
5
Verification of Global model (T213L30 for
1998-2005.9 / RMSE of 500hPa )
6
Data assimilation system
7
On-going and Plan of data assimilation
8
Thank you!
Numerical Weather Prediction Division, Korea
Meteorological Administration
9
Direct Assimilation Algorithm for ATOVS
Structures
RTTOV version 7
ATOVS Radiance
QC, bias correction Thinning
1DVAR
1DVAR
Observation error(Joo Lee 2002)
Radiance departure
Incremental 3dVar
  • Observation error
  • RTM error and
  • instrument error
  • Square of innovation
  • First estimates of
  • Derber and Wu (1999)
  • Background error
  • in radiance space

10
Results
Typhoon Track Forecast Error
Typhoon track forecast error is much reduced.
Reduction of error is about 200km at 72 hour
forecast.
G3VR DG3V
11
Results of BIAS correction
One month averaged RMSE of 500hPa
  • Experiments
  • DG3V Direct assimilation 3dVar
  • BIAS DG3V Bias correction is applied in the
    stratospheric channels depending on the latitude

Bias correction is important to improve forecast
skill.
12
Minimization of data number for QuikSCAT (Quality
Control)
13
Change of basic fields due to QuikSCAT
14
Verification of typhoon track
Songa Meari Maon
Tokage




15
Unified 3dVar (U3VR)
  • Motivation (2004)
  • Common code share for global and regional DA
    (observations, preconditioning, background error
    statistics, minimization algorithm, observation
    operator etc)
  • Man Power
  • 2005
  • Basic Performance Test for T213L30 and WRF
    cycling
  • 2006
  • Background error tuning
  • Improvement of observation data processing ( Burf
    format, QC )
  • Introduction of satellite radiance
  • Test on operational frame
  • Starting 4DVAR on WRF model

16
Comparison of R3VR, G3VR and U3VR
17
Initial MSLP (00 UTC 18 May 2005)
SI (CNTL)
3h-Cycled U3dVR (2 day)
T426 (ANAL)
  • U3dVar by continuous cycling gives the
    reasonable initial MSLP pattern.
  • SI gives too small scaled MSLP by the topography.

18
First Guess at Appropriate Time (FGAT)
  • FGAT is a method to make an innovation with first
    guess at appropriate time (observation time).
  • Normally in 3dvar weve considered the
    observation data within the time window are
    observed at the same time with first guess. ? It
    can make an error!
  • - introduced by D. Vasiljevic (mid 1980s)
  • - ECMWF reanalysis ERA-40
  • - NCEP GSI
  • - WRF FGAT

19
How to make the first guess at appropriate time
WRF 3DVAR FGAT
-03 02 01 00 01
02 03
GDPS 3DVAR FGAT
-03 02 01 00 01
02 03


y
y
20
Data processing
CDA (Comprehensive Database for Assimilation)
routine to process the observational data for
3DVAR
  • D-value
  • CTRL DVAL OBS-GUES
  • FGAT DVAL OBS-(GUESGSDTDELT)
  • Unify data which are the same position and
    height
  •   Priority maximum priority data
  •  Time difference the nearest data to anal
    time
  • Observation error minimum observation error
    data
  •    D-value minimum D-value  data
  •    QC good quality data , etc..
  • ? FGAT skip this
    algorithm except simultaneously happened data

21
Processing time for 3dvar (20051115-20060109)
CNTL FGAT 02023 02124
Daily averaged data number (20051229-20060108)
18?
22
In Time
NUMERICAL WEATHER PREDICTION DIVISION/KMA
23
In Time
RADIA TION
NUMERICAL WEATHER PREDICTION DIVISION/KMA
24
IV for ATOVS (2005.10.04.)
CTRL
FGAT
NUMERICAL WEATHER PREDICTION DIVISION/KMA
25
KIROGI 2005-20 (2005.10.13.12.)
NUMERICAL WEATHER PREDICTION DIVISION/KMA
26
RMSE for Analysis field (20051121-20051231)
FGAT gave somewhat positive impact.
27
BIAS for Analysis field (20051121-20051231)
28
J DJ
29
(No Transcript)
30
???? ???? (????? 1) ???-??? RD ?? ??
Next-generation KMA GSM
31
???? ???? (????? 2) ???-??? RD ?? ????
32
???? ???? (????? 3) ???-??? RD ?? ????
  • ??? ?????? ?? 3?
  • ?? ??? ?? ? ?? 4?-6?
  • ?? ?? 7?
  • ?? ? ?? 8-10?
  • ?? ?? ? ???? ??? ?????? ???? 11?
  • ???? ? ??? ??? ???? (T426) ??
  • ?? ???? 3dVar? ?? ? 4dVar? ??
  • KMA/YSU GDAPS ?? ??

33
???? ???? (????)
  • ??
  • - ??? ??? ?????? WRF? ??
  • - ?? ?? ?? ?? ??? ???? ????? ????? ???
  • ???????? ?? ??
  • - WRF ??? ?? ?? ?? ??
  • ?? ??
  • - WRF ??? ??? ?? ??
  • - WRF ??? ?? ?? ??
  • - RSL ??? ??? ??? ??? ?? CPU ? WRF ??? ??
  • - ?? CPU ??? ???? WRF ?? ??
  • - 4dVar ??
  • ? ?????? ??, ??? ? ?? ??? ???????? KWRF (Korean
    WRF) ??

34
Table 2. Physical processes in global and
regional models at KMA.
Table 2. Physical processes in global and
regional models at KMA.
???? (??? vs. ??)
 
 
35
?? ??
1. ??? ???? - ?? ??? ??? ?? ? ????? ?? ??
RD ?? ? ??? ??? ?? ??? ? RD ??? ?? ???
?? ? ?? ?? ? ?? T426 ??? ?? ?? 2. ?? ????
- RDAPS ?? KWRF ???? ?? ? 10km ???
? ???? 51??75?? ?? ? ???? ??? ?? ???? ??
? 4dVar ?? ? ?? ??? ?? ?? ? ?? ?? WRF
??? ?? ?? ??? ?? ?? ????? ???? ?? ??
36
3. ????? ???? ?? ? ???? ??? ?? - ??? ??????
?? ?? ? ???, ??? ?? ? ???? (T106L30 ?
T213L30 ? T213L40, 32 ??) - ??? ?? ?? ??
4. ????? ??? ?? - ????? 4dVar 5. ??? ??
??? ?? ??? - ?? ????? ??? ?? T426L40? ???
- ?? ????? ??? ?? 10km KWRF? ???
Write a Comment
User Comments (0)
About PowerShow.com