Title: Conventional Pollutants in Rivers and Estuaries
1Conventional Pollutants in Rivers and Estuaries
ORGANIC MATTER
OXYGEN
DECOMPOSITION (bacteria/animals)
PRODUCTION (plants)
Chemical energy
Solar energy
CARBON DIOXIDE
INORGANIC NUTRIENTS
2Principle of Superposition
- Mass balance for DO deficit
- In terms of L and N
3Diurnal Variations
4PHOTOSYNTHESIS CHARACTERISTICS
- Dissolved oxygen deficit mass balance
5for i124 os(i)-139.344111.575701e5/ta(i)-
6.642308e7/ta(i)21.2438e10/ta(i)3- ...
8.621949e11/ta(i)4 end osexp(os) dos-d ee
norm(dox-d)
- function eeerrordef(x)
- kax(1)
- Pmx(2)
- Dmx(3)
- dox
- tt
- n10
- f13./24
- bn12
- for i110 bn(i)cos(ipif)4pi/f/((pi/f)2-(2p
i)2ii) - end
- d124
- Tp1.
- for t124
- d(t)Dm
- for i110
- d(t)d(t)-Pmbn(i)/(ka2(2pii/Tp)2)0.5
... - cos(2pii/Tp(t/24.-fTp/2.)-atan(2pii
/ka/Tp)) - end
6DYNAMIC APPROACH
- Routing water (St. Venant equations)
- Continuity equation
- Momentum equation (Local acceleration
Convective accelerationpressure gravity
friction 0
Kinematic wave
Diffusion wave
Dynamic wave
7KINEMATIC ROUTING
- Geometric slope Friction slope
- Mannings equation
- Express cross section area as a function of flow
8KINEMATIC ROUTING (ctd)
- Express the continuity equation exclusively as a
function of Q - Discretize continuity equation and solve it
numerically
k1
?t
k
1
2
3
4
n
n-1
n
5
?x
9KINEMATIC ROUTING (ctd)
- Discretize continuity equation and solve it
numerically - Example
- Q2.5m3s-1 S00.004
- B15m n00.07
- Qe2.52.5sin(wt) w2pi(0.5d)-1
10S00.004 B15 n00.07 n80 Qzeros(2,n)2.5 d
x1000. meters dt700. seconds alpha(n0B(2.
/3.)/sqrt(S0))(3./5.) beta3./5. for it1150
if itdt/24/3600 sin(2.piitdt/(0.5243600)) else
Q(2,1)2.5 end for i2n
Q(2,i)(dt/dxQ(2,i-1) ((Q(1,i)Q(2,i-1))/2.)
(1-beta)... alphabetaQ(1,i))/ (dt/dx
((Q(1,i)Q(2,i-1))/2.)(1-beta)...
alphabeta) end Q(1,)Q(2,) if
floor(it/40)40it x1n
plot(x,Q(1,)) hold on end end
11ROUTING POLLUTANTS
- Mass conservation
- Discretized mass balance equation
k1
?t
k
1
2
3
4
n
n-1
n
5
?x
12ROUTING POLLUTANTS (ctd)
- Alternate formulation
- Example
- u 1 ms-1
- ?x 1000 m
- ?t 500 m
13ROUTING POLLUTANTSNumerical Example
u1. m/s dx1000 m dt500 s n100 x1100
yx-20 c0exp(-0.015y.y) c1c0 plot(x,c0) ho
ld on for it1120 for i2n-1
c1(i)c0(i)udt/dx (c0(i-1)-c0(i)) end
c0c1 if fix(it/40)40it
plot(x,c0) end end xlabel('x
(km)') ylabel('C mgL-1')
14ROUTING POLLUTANTS (ctd)
- Second order (both time and space) formulation
- Stability condition
15ROUTING POLLUTANTS (ctd)
16OXYGEN BALANCE GENERAL NUMERICAL APPROACH
- Do spatial discretization
- Route the water for each reach
- Apply water continuity at junctions
- Q8Q15Q16
- Route the pollutants for each reach
- Apply pollutant continuity junctions
- Solve the production/decomposition
- for each grid point
1
Reach 1
2
3
9
4
10
11
5
12
6
13
14
7
Reach 2
15
8
16
17
18
19
Reach 3
20
21
22
17Sensitivity Analysis
- First order analysis
- yf(x)
- y0f(x0)
18Sensitivity Analysis
- Monte Carlo Analysis
- 1. Generate dx0 N(0,?x)
- 2. Determine yf(x0dx0)
- 3. Save YY y
- 4. ii1
- 5. If i
- 6. Analyze statistically Y
19xspan0100 parameter definition Lrzeros(100,10
1) Drzeros(100,101) global ka kd
U U16.4 y010 0' initial concentrations are
given in mg/L for i1100, ka2.00.3randn
kd0.60.1randn while ka
ka2.00.3randn kd0.60.1randn end
x,y ODE45('dydx_sp',xspan,y0)
Lr(i,)y(,1)' Dr(i,)y(,2)'
end subplot 211 plot(x, mean(Lr,1),'linewidth',1.
25) hold on plot(x, mean(Lr,1)std(Lr,0,1),'--',
'linewidth',1.25) plot(x, mean(Lr,1)-std(Lr,0,1
),'--', 'linewidth',1.25) ylabel('mg
L-1') title('BOD vs. distance') subplot
212 plot(x, mean(Dr,1),'r','linewidth',1.25) hold
on plot(x, mean(Dr,1)std(Dr,0,1),'r--',
'linewidth',1.25) plot(x, mean(Dr,1)-std(Dr,0,
1),'r--', 'linewidth',1.25) xlabel('Distance
(mi)') title('DO Deficit vs. distance') print
-djpeg bod_mc.jpeg