Conventional Pollutants in Rivers and Estuaries - PowerPoint PPT Presentation

1 / 19
About This Presentation
Title:

Conventional Pollutants in Rivers and Estuaries

Description:

Conventional Pollutants in Rivers and Estuaries – PowerPoint PPT presentation

Number of Views:66
Avg rating:3.0/5.0
Slides: 20
Provided by: fpwh
Category:

less

Transcript and Presenter's Notes

Title: Conventional Pollutants in Rivers and Estuaries


1
Conventional Pollutants in Rivers and Estuaries
ORGANIC MATTER
OXYGEN
DECOMPOSITION (bacteria/animals)
PRODUCTION (plants)
Chemical energy
Solar energy
CARBON DIOXIDE
INORGANIC NUTRIENTS
2
Principle of Superposition
  • Mass balance for DO deficit
  • In terms of L and N

3
Diurnal Variations
4
PHOTOSYNTHESIS CHARACTERISTICS
  • Dissolved oxygen deficit mass balance

5
for i124 os(i)-139.344111.575701e5/ta(i)-
6.642308e7/ta(i)21.2438e10/ta(i)3- ...
8.621949e11/ta(i)4 end osexp(os) dos-d ee
norm(dox-d)
  • function eeerrordef(x)
  • kax(1)
  • Pmx(2)
  • Dmx(3)
  • dox
  • tt
  • n10
  • f13./24
  • bn12
  • for i110 bn(i)cos(ipif)4pi/f/((pi/f)2-(2p
    i)2ii)
  • end
  • d124
  • Tp1.
  • for t124
  • d(t)Dm
  • for i110
  • d(t)d(t)-Pmbn(i)/(ka2(2pii/Tp)2)0.5
    ...
  • cos(2pii/Tp(t/24.-fTp/2.)-atan(2pii
    /ka/Tp))
  • end

6
DYNAMIC APPROACH
  • Routing water (St. Venant equations)
  • Continuity equation
  • Momentum equation (Local acceleration
    Convective accelerationpressure gravity
    friction 0

Kinematic wave
Diffusion wave
Dynamic wave
7
KINEMATIC ROUTING
  • Geometric slope Friction slope
  • Mannings equation
  • Express cross section area as a function of flow

8
KINEMATIC ROUTING (ctd)
  • Express the continuity equation exclusively as a
    function of Q
  • Discretize continuity equation and solve it
    numerically

k1
?t
k
1
2
3
4
n
n-1
n
5
?x
9
KINEMATIC ROUTING (ctd)
  • Discretize continuity equation and solve it
    numerically
  • Example
  • Q2.5m3s-1 S00.004
  • B15m n00.07
  • Qe2.52.5sin(wt) w2pi(0.5d)-1

10
S00.004 B15 n00.07 n80 Qzeros(2,n)2.5 d
x1000. meters dt700. seconds alpha(n0B(2.
/3.)/sqrt(S0))(3./5.) beta3./5. for it1150
if itdt/24/3600 sin(2.piitdt/(0.5243600)) else
Q(2,1)2.5 end for i2n
Q(2,i)(dt/dxQ(2,i-1) ((Q(1,i)Q(2,i-1))/2.)
(1-beta)... alphabetaQ(1,i))/ (dt/dx
((Q(1,i)Q(2,i-1))/2.)(1-beta)...
alphabeta) end Q(1,)Q(2,) if
floor(it/40)40it x1n
plot(x,Q(1,)) hold on end end
11
ROUTING POLLUTANTS
  • Mass conservation
  • Discretized mass balance equation

k1
?t
k
1
2
3
4
n
n-1
n
5
?x
12
ROUTING POLLUTANTS (ctd)
  • Alternate formulation
  • Example
  • u 1 ms-1
  • ?x 1000 m
  • ?t 500 m

13
ROUTING POLLUTANTSNumerical Example
u1. m/s dx1000 m dt500 s n100 x1100
yx-20 c0exp(-0.015y.y) c1c0 plot(x,c0) ho
ld on for it1120 for i2n-1
c1(i)c0(i)udt/dx (c0(i-1)-c0(i)) end
c0c1 if fix(it/40)40it
plot(x,c0) end end xlabel('x
(km)') ylabel('C mgL-1')
14
ROUTING POLLUTANTS (ctd)
  • Second order (both time and space) formulation
  • Stability condition

15
ROUTING POLLUTANTS (ctd)
  • Numerical oscillations

16
OXYGEN BALANCE GENERAL NUMERICAL APPROACH
  • Do spatial discretization
  • Route the water for each reach
  • Apply water continuity at junctions
  • Q8Q15Q16
  • Route the pollutants for each reach
  • Apply pollutant continuity junctions
  • Solve the production/decomposition
  • for each grid point

1
Reach 1
2
3
9
4
10
11
5
12
6
13
14
7
Reach 2
15
8
16
17
18
19
Reach 3
20
21
22
17
Sensitivity Analysis
  • First order analysis
  • yf(x)
  • y0f(x0)

18
Sensitivity Analysis
  • Monte Carlo Analysis
  • 1. Generate dx0 N(0,?x)
  • 2. Determine yf(x0dx0)
  • 3. Save YY y
  • 4. ii1
  • 5. If i
  • 6. Analyze statistically Y

19
xspan0100 parameter definition Lrzeros(100,10
1) Drzeros(100,101) global ka kd
U U16.4 y010 0' initial concentrations are
given in mg/L for i1100, ka2.00.3randn
kd0.60.1randn while ka
ka2.00.3randn kd0.60.1randn end
x,y ODE45('dydx_sp',xspan,y0)
Lr(i,)y(,1)' Dr(i,)y(,2)'
end subplot 211 plot(x, mean(Lr,1),'linewidth',1.
25) hold on plot(x, mean(Lr,1)std(Lr,0,1),'--',
'linewidth',1.25) plot(x, mean(Lr,1)-std(Lr,0,1
),'--', 'linewidth',1.25) ylabel('mg
L-1') title('BOD vs. distance') subplot
212 plot(x, mean(Dr,1),'r','linewidth',1.25) hold
on plot(x, mean(Dr,1)std(Dr,0,1),'r--',
'linewidth',1.25) plot(x, mean(Dr,1)-std(Dr,0,
1),'r--', 'linewidth',1.25) xlabel('Distance
(mi)') title('DO Deficit vs. distance') print
-djpeg bod_mc.jpeg
Write a Comment
User Comments (0)
About PowerShow.com