Title: Conventional Pollutants in Rivers and Estuaries
1Conventional Pollutants in Rivers and Estuaries
ORGANIC MATTER
OXYGEN
DECOMPOSITION (bacteria/animals)
PRODUCTION (plants)
Chemical energy
Solar energy
CARBON DIOXIDE
INORGANIC NUTRIENTS
2THE DISSOLVED OXYGEN SAG
WWTP
River
DO (mgL-1)
Critical concentration (decompositionreaeration)
Distance
Decomposition dominates
Rearetion dominates
3BIOCHEMICAL OXYGEN DEMAND
- Experiment
- decomposition of carbonaceous matter
- C6H12O66O2? 6CO26H2O
- Mass balance ?
- General solution gg0e -k1t
- Oxygen mass balance ?
- General solution for oxygen
4BIOCHEMICAL OXYGEN DEMAND(ctd.)
- Lrog g
- LL0 exp(-k1t)
- BODL0-L
5Streeter-Phelps equation
- Steady state for ultimate BOD ?
- Steady state for DO ?
- Deficit DCs-C ?
- Solutions
- BOD
- D
6Streeter-Phelps Equation (Example)
- L010 mg L-1
- ka2.0 d-1
- kd0.6 d-1
- D0 0 mgL-1
- U16.4 mi d-1
7Streeter-Phelps Equation (Code)
- xspan0100
- parameter definition
- global ka kd U
- ka2.0
- kd0.6
- U16.4
- y010 0'
- initial concentrations are given in mg/L
- x,y ODE45('dydx_sp',xspan,y0)
- plot(x, y(,1),'linewidth',1.25)
- hold on
- plot(x, y(,2),'r','linewidth',1.25)
- do_any0(2)exp(-kax/U)y0(1)...
- kr/(ka-kd)(exp(-kdx/U)-exp(-kax/U))
- ylabel('mg L-1')
- xlabel('Distance (mi)')
- legend('BOD', 'DO')
- plot(x,do_an,'r')
- function dydydx_sp(x, y)
- global ka kd U
- Ly(1)
- Dy(2)
- dyy
- dy(1)-kd/UL
- dy(2)kd/UL-ka/UD
8Critical Deficit and Distance
9DCS DEPENDENCE ON VARIOUS FACTORS
- Increases with WLQ
- Increases with T
- Increases with D0
- Decreases with Q
10Stream Re-aeration Formulas
- OConnor-Dobbins
- Owens-Edwards-Gibbs
- H1-2.5 U0.1-0.5 Q4-36
- USGS
- ka re-aeration constant, d-1
- U mean stream velocity, ft-1
- H mean stream depth, ft
- Q flow-rate, ft3s-1
- t travel time, d
11Sedimentation of BOD
kd
ka
L
D
0
ks
- Steady state for ultimate BOD ?
- Deficit DCs-C ?
- Solution
12Estimation of kr and kd in a stream
13Principle of Superposition
- Mass balance for DO deficit
- In terms of L and N
14Diurnal Variations
15Sensitivity Analysis
- First order analysis
- yf(x)
- y0f(x0)
16Sensitivity Analysis
- Monte Carlo Analysis
- 1. Generate dx0 N(0,?x)
- 2. Determine yf(x0dx0)
- 3. Save YY y
- 4. ii1
- 5. If i lt imax go to 1
- 6. Analyze statistically Y
17xspan0100 parameter definition Lrzeros(100,10
1) Drzeros(100,101) global ka kd
U U16.4 y010 0' initial concentrations are
given in mg/L for i1100, ka2.00.3randn
kd0.60.1randn while ka lt 0 kr lt 0,
ka2.00.3randn kd0.60.1randn end
x,y ODE45('dydx_sp',xspan,y0)
Lr(i,)y(,1)' Dr(i,)y(,2)'
end subplot 211 plot(x, mean(Lr,1),'linewidth',1.
25) hold on plot(x, mean(Lr,1)std(Lr,0,1),'--',
'linewidth',1.25) plot(x, mean(Lr,1)-std(Lr,0,1
),'--', 'linewidth',1.25) ylabel('mg
L-1') title('BOD vs. distance') subplot
212 plot(x, mean(Dr,1),'r','linewidth',1.25) hold
on plot(x, mean(Dr,1)std(Dr,0,1),'r--',
'linewidth',1.25) plot(x, mean(Dr,1)-std(Dr,0,
1),'r--', 'linewidth',1.25) xlabel('Distance
(mi)') title('DO Deficit vs. distance') print
-djpeg bod_mc.jpeg
18DYNAMIC APPROACH
- Routing water (St. Venant equations)
- Continuity equation
- Momentum equation (Local acceleration
Convective accelerationpressure gravity
friction 0
Kinematic wave
Diffusion wave
Dynamic wave
19KINEMATIC ROUTING
- Geometric slope Friction slope
- Mannings equation
- Express cross section area as a function of flow
20KINEMATIC ROUTING (ctd)
- Express the continuity equation exclusively as a
function of Q - Discretize continuity equation and solve it
numerically
k1
?t
k
1
2
3
4
n
n-1
n
5
?x
21KINEMATIC ROUTING (ctd)
- Discretize continuity equation and solve it
numerically - Example
- Q2.5m3s-1 S00.004
- B15m n00.07
- Qe2.52.5sin(wt) w2pi(0.5d)-1
22S00.004 B15 n00.07 n80 Qzeros(2,n)2.5 d
x1000. meters dt700. seconds alpha(n0B(2.
/3.)/sqrt(S0))(3./5.) beta3./5. for it1150
if itdt/24/3600 lt 0.25 Q(2,1)2.52.5
sin(2.piitdt/(0.5243600)) else
Q(2,1)2.5 end for i2n
Q(2,i)(dt/dxQ(2,i-1) ((Q(1,i)Q(2,i-1))/2.)
(1-beta)... alphabetaQ(1,i))/ (dt/dx
((Q(1,i)Q(2,i-1))/2.)(1-beta)...
alphabeta) end Q(1,)Q(2,) if
floor(it/40)40it x1n
plot(x,Q(1,)) hold on end end
23ROUTING POLLUTANTS
- Mass conservation
- Discretized mass balance equation
k1
?t
k
1
2
3
4
n
n-1
n
5
?x
24ROUTING POLLUTANTS (ctd)
- Alternate formulation
- Example
- u 1 ms-1
- ?x 1000 m
- ?t 500 m
25ROUTING POLLUTANTSNumerical Example
u1. m/s dx1000 m dt500 s n100 x1100
yx-20 c0exp(-0.015y.y) c1c0 plot(x,c0) ho
ld on for it1120 for i2n-1
c1(i)c0(i)udt/dx (c0(i-1)-c0(i)) end
c0c1 if fix(it/40)40it
plot(x,c0) end end xlabel('x
(km)') ylabel('C mgL-1')
26ROUTING POLLUTANTS (ctd)
- More accurate (second order both time and space)
formulation
27(No Transcript)