Conventional Pollutants in Rivers and Estuaries - PowerPoint PPT Presentation

1 / 27
About This Presentation
Title:

Conventional Pollutants in Rivers and Estuaries

Description:

DECOMPOSITION (bacteria/animals) PRODUCTION (plants) Chemical. energy. Solar. energy ... decomposition of carbonaceous matter. C6H12O6 6O2 6CO2 6H2O. Mass balance ... – PowerPoint PPT presentation

Number of Views:126
Avg rating:3.0/5.0
Slides: 28
Provided by: fpwh
Category:

less

Transcript and Presenter's Notes

Title: Conventional Pollutants in Rivers and Estuaries


1
Conventional Pollutants in Rivers and Estuaries
ORGANIC MATTER
OXYGEN
DECOMPOSITION (bacteria/animals)
PRODUCTION (plants)
Chemical energy
Solar energy
CARBON DIOXIDE
INORGANIC NUTRIENTS
2
THE DISSOLVED OXYGEN SAG
WWTP
River
DO (mgL-1)
Critical concentration (decompositionreaeration)
Distance
Decomposition dominates
Rearetion dominates
3
BIOCHEMICAL OXYGEN DEMAND
  • Experiment
  • decomposition of carbonaceous matter
  • C6H12O66O2? 6CO26H2O
  • Mass balance ?
  • General solution gg0e -k1t
  • Oxygen mass balance ?
  • General solution for oxygen

4
BIOCHEMICAL OXYGEN DEMAND(ctd.)
  • Lrog g
  • LL0 exp(-k1t)
  • BODL0-L

5
Streeter-Phelps equation
  • Steady state for ultimate BOD ?
  • Steady state for DO ?
  • Deficit DCs-C ?
  • Solutions
  • BOD
  • D

6
Streeter-Phelps Equation (Example)
  • L010 mg L-1
  • ka2.0 d-1
  • kd0.6 d-1
  • D0 0 mgL-1
  • U16.4 mi d-1

7
Streeter-Phelps Equation (Code)
  • xspan0100
  • parameter definition
  • global ka kd U
  • ka2.0
  • kd0.6
  • U16.4
  • y010 0'
  • initial concentrations are given in mg/L
  • x,y ODE45('dydx_sp',xspan,y0)
  • plot(x, y(,1),'linewidth',1.25)
  • hold on
  • plot(x, y(,2),'r','linewidth',1.25)
  • do_any0(2)exp(-kax/U)y0(1)...
  • kr/(ka-kd)(exp(-kdx/U)-exp(-kax/U))
  • ylabel('mg L-1')
  • xlabel('Distance (mi)')
  • legend('BOD', 'DO')
  • plot(x,do_an,'r')
  • function dydydx_sp(x, y)
  • global ka kd U
  • Ly(1)
  • Dy(2)
  • dyy
  • dy(1)-kd/UL
  • dy(2)kd/UL-ka/UD

8
Critical Deficit and Distance
  • Dc , xc ? dDc/dxc0

9
DCS DEPENDENCE ON VARIOUS FACTORS
  • Increases with WLQ
  • Increases with T
  • Increases with D0
  • Decreases with Q

10
Stream Re-aeration Formulas
  • OConnor-Dobbins
  • Owens-Edwards-Gibbs
  • H1-2.5 U0.1-0.5 Q4-36
  • USGS
  • ka re-aeration constant, d-1
  • U mean stream velocity, ft-1
  • H mean stream depth, ft
  • Q flow-rate, ft3s-1
  • t travel time, d

11
Sedimentation of BOD
kd
ka
L
D
0
ks
  • Steady state for ultimate BOD ?
  • Deficit DCs-C ?
  • Solution

12
Estimation of kr and kd in a stream
13
Principle of Superposition
  • Mass balance for DO deficit
  • In terms of L and N

14
Diurnal Variations
15
Sensitivity Analysis
  • First order analysis
  • yf(x)
  • y0f(x0)

16
Sensitivity Analysis
  • Monte Carlo Analysis
  • 1. Generate dx0 N(0,?x)
  • 2. Determine yf(x0dx0)
  • 3. Save YY y
  • 4. ii1
  • 5. If i lt imax go to 1
  • 6. Analyze statistically Y

17
xspan0100 parameter definition Lrzeros(100,10
1) Drzeros(100,101) global ka kd
U U16.4 y010 0' initial concentrations are
given in mg/L for i1100, ka2.00.3randn
kd0.60.1randn while ka lt 0 kr lt 0,
ka2.00.3randn kd0.60.1randn end
x,y ODE45('dydx_sp',xspan,y0)
Lr(i,)y(,1)' Dr(i,)y(,2)'
end subplot 211 plot(x, mean(Lr,1),'linewidth',1.
25) hold on plot(x, mean(Lr,1)std(Lr,0,1),'--',
'linewidth',1.25) plot(x, mean(Lr,1)-std(Lr,0,1
),'--', 'linewidth',1.25) ylabel('mg
L-1') title('BOD vs. distance') subplot
212 plot(x, mean(Dr,1),'r','linewidth',1.25) hold
on plot(x, mean(Dr,1)std(Dr,0,1),'r--',
'linewidth',1.25) plot(x, mean(Dr,1)-std(Dr,0,
1),'r--', 'linewidth',1.25) xlabel('Distance
(mi)') title('DO Deficit vs. distance') print
-djpeg bod_mc.jpeg
18
DYNAMIC APPROACH
  • Routing water (St. Venant equations)
  • Continuity equation
  • Momentum equation (Local acceleration
    Convective accelerationpressure gravity
    friction 0

Kinematic wave
Diffusion wave
Dynamic wave
19
KINEMATIC ROUTING
  • Geometric slope Friction slope
  • Mannings equation
  • Express cross section area as a function of flow

20
KINEMATIC ROUTING (ctd)
  • Express the continuity equation exclusively as a
    function of Q
  • Discretize continuity equation and solve it
    numerically

k1
?t
k
1
2
3
4
n
n-1
n
5
?x
21
KINEMATIC ROUTING (ctd)
  • Discretize continuity equation and solve it
    numerically
  • Example
  • Q2.5m3s-1 S00.004
  • B15m n00.07
  • Qe2.52.5sin(wt) w2pi(0.5d)-1

22
S00.004 B15 n00.07 n80 Qzeros(2,n)2.5 d
x1000. meters dt700. seconds alpha(n0B(2.
/3.)/sqrt(S0))(3./5.) beta3./5. for it1150
if itdt/24/3600 lt 0.25 Q(2,1)2.52.5
sin(2.piitdt/(0.5243600)) else
Q(2,1)2.5 end for i2n
Q(2,i)(dt/dxQ(2,i-1) ((Q(1,i)Q(2,i-1))/2.)
(1-beta)... alphabetaQ(1,i))/ (dt/dx
((Q(1,i)Q(2,i-1))/2.)(1-beta)...
alphabeta) end Q(1,)Q(2,) if
floor(it/40)40it x1n
plot(x,Q(1,)) hold on end end
23
ROUTING POLLUTANTS
  • Mass conservation
  • Discretized mass balance equation

k1
?t
k
1
2
3
4
n
n-1
n
5
?x
24
ROUTING POLLUTANTS (ctd)
  • Alternate formulation
  • Example
  • u 1 ms-1
  • ?x 1000 m
  • ?t 500 m

25
ROUTING POLLUTANTSNumerical Example
u1. m/s dx1000 m dt500 s n100 x1100
yx-20 c0exp(-0.015y.y) c1c0 plot(x,c0) ho
ld on for it1120 for i2n-1
c1(i)c0(i)udt/dx (c0(i-1)-c0(i)) end
c0c1 if fix(it/40)40it
plot(x,c0) end end xlabel('x
(km)') ylabel('C mgL-1')
26
ROUTING POLLUTANTS (ctd)
  • More accurate (second order both time and space)
    formulation

27
(No Transcript)
Write a Comment
User Comments (0)
About PowerShow.com