Title: The Time-abstracting Bisimulation
1The Time-abstracting Bisimulation
Equivalence ? on TA states
?
s1
s2
?1
s3
Preserve discrete state changes.
Abstract exact time delays.
2The Time-abstracting Quotient Graph
- The quotient induced by the greatest
time-abstracting - bisimulation defined on the TA.
- Nodes symbolic states (equivalence classes).
- Edges symbolic transitions (discrete and
time).
- Basic property pre-stability
?
a
?
a
s1
s2
s1
s2
Q1
Q2
Q1
Q2
3Verification on the Quotient graphLinear-time
Every cycle in the quotient graph contains an
infinite run and vice versa.
Q1
Q4
Q3
Q2
s1
4Verification on the Quotient graphBranching-time
If s1 ? s2, then for any TCTL formula ?, s1
satisfies ? iff s2 satisfies ?.
Due to determinism of time.
5Regions Alternativ Definition
6Problem with regions
Number of regions over n clocks
?
Explosion in number of clocks Explosion in
maximal constant
?
Reachability is PSPACE complete for a single TA
7ZonesFrom infinite to finite
Symbolic state (set) (n, )
State (n, x3.2, y2.5 )
Zone conjunction of x-yltn, xltgtn
8Symbolic Transitions
1ltxlt4 1ltylt3
y
delays to
n
x
xgt3
conjuncts to
a
y0
projects to
m
Thus (n,1ltxlt4,1ltylt3) a gt (m,3ltx, y0)
9Fischers Protocolanalysis using zones
2
V
Criticial Section
X0
Xgt10
Xlt10
Init V1
V1
V1
A1
CS1
B1
Ylt10
Y0
Ygt10
V2
V2
CS2
B2
A2
10Fischers cont.
X0
Xgt10
Xlt10
V1
V1
A1
CS1
B1
Ygt10
Ylt10
Y0
V2
V2
A2
CS2
B2
Untimed case
A1,A2,v1
A1,B2,v2
A1,CS2,v2
B1,CS2,v1
CS1,CS2,v1
11Fischers cont.
X0
Xgt10
Xlt10
V1
V1
A1
CS1
B1
Ygt10
Ylt10
Y0
V2
V2
A2
CS2
B2
Untimed case
A1,A2,v1
A1,B2,v2
A1,CS2,v2
B1,CS2,v1
CS1,CS2,v1
Taking time into account
12Fischers cont.
X0
Xgt10
Xlt10
V1
V1
A1
CS1
B1
Ygt10
Ylt10
Y0
V2
V2
A2
CS2
B2
Untimed case
A1,A2,v1
A1,B2,v2
A1,CS2,v2
B1,CS2,v1
CS1,CS2,v1
Taking time into account
Y
10
10
X
10
13Fischers cont.
X0
Xgt10
Xlt10
V1
V1
A1
CS1
B1
Ygt10
Ylt10
Y0
V2
V2
A2
CS2
B2
Untimed case
A1,A2,v1
A1,B2,v2
A1,CS2,v2
B1,CS2,v1
CS1,CS2,v1
Taking time into account
Y
10
10
X
10
14Fischers cont.
X0
Xgt10
Xlt10
V1
V1
A1
CS1
B1
Ygt10
Ylt10
Y0
V2
V2
A2
CS2
B2
Untimed case
A1,A2,v1
A1,B2,v2
A1,CS2,v2
B1,CS2,v1
CS1,CS2,v1
Taking time into account
Y
10
10
X
10
10
15Fischers cont.
X0
Xgt10
Xlt10
V1
V1
A1
CS1
B1
Ygt10
Ylt10
Y0
V2
V2
A2
CS2
B2
Untimed case
A1,A2,v1
A1,B2,v2
A1,CS2,v2
B1,CS2,v1
CS1,CS2,v1
Taking time into account
Y
10
10
X
10
10
16Forward Rechability
Init -gt Final ?
INITIAL Passed Ø Waiting
(n0,Z0) REPEAT - pick (n,Z) in Waiting
- if for some Z Z (n,Z) in Passed
then STOP - else (explore) add (m,U)
(n,Z) gt (m,U) to Waiting
Add (n,Z) to Passed UNTIL Waiting Ø
or Final is in Waiting
Final
Waiting
Init
Passed
17Forward Rechability
Init -gt Final ?
INITIAL Passed Ø Waiting
(n0,Z0) REPEAT - pick (n,Z) in Waiting
- if for some Z Z (n,Z) in Passed
then STOP - else (explore) add (m,U)
(n,Z) gt (m,U) to Waiting
Add (n,Z) to Passed UNTIL Waiting Ø
or Final is in Waiting
Final
Waiting
n,Z
n,Z
Init
Passed
18Forward Rechability
Init -gt Final ?
INITIAL Passed Ø Waiting
(n0,Z0) REPEAT - pick (n,Z) in Waiting
- if for some Z Z (n,Z) in Passed
then STOP - else /explore/ add (m,U)
(n,Z) gt (m,U) to Waiting
Add (n,Z) to Passed UNTIL Waiting Ø
or Final is in Waiting
Waiting
Final
m,U
n,Z
n,Z
Init
Passed
19Forward Rechability
Init -gt Final ?
INITIAL Passed Ø Waiting
(n0,Z0) REPEAT - pick (n,Z) in Waiting
- if for some Z Z (n,Z) in Passed
then STOP - else /explore/ add (m,U)
(n,Z) gt (m,U) to Waiting
Add (n,Z) to Passed UNTIL Waiting Ø
or Final is in Waiting
Waiting
Final
m,U
n,Z
n,Z
Init
Passed
20Canonical Dastructures for Zones Difference
Bounded Matrices
Bellman 1958, Dill 1989
Inclusion
x
1
2
xlt1 y-xlt2 z-ylt2 zlt9
D1
Graph
y
0
9
2
z
? ?
D2
xlt2 y-xlt3 ylt3 z-ylt3 zlt7
x
2
3
3
Graph
y
0
7
3
z
21Canonical Dastructures for Zones Difference
Bounded Matrices
Bellman 1958, Dill 1989
Inclusion
x
x
1
2
xlt1 y-xlt2 z-ylt2 zlt9
1
2
Shortest Path Closure
D1
3
Graph
y
0
y
0
9
5
2
z
2
z
? ?
D2
x
xlt2 y-xlt3 ylt3 z-ylt3 zlt7
x
2
3
Shortest Path Closure
2
3
3
3
y
Graph
0
y
0
6
3
7
3
z
z
22Canonical Dastructures for Zones Difference
Bounded Matrices
Bellman 1958, Dill 1989
Emptiness
x
1
xlt1 ygt5 y-xlt3
D
3
Graph
0
y
-5
Negative Cycle iff empty solution set
Compact
23Canonical Dastructures for Zones Difference
Bounded Matrices
Future
y
y
Future D
D
x
x
1lt x lt4 1lt y lt3
1ltx, 1lty -2ltx-ylt3
x
4
4
x
x
Remove upper bounds on clocks
-1
Shortest Path Closure
-1
-1
3
3
0
0
0
3
3
2
2
y
-1
y
-1
y
-1
24Canonical Dastructures for Zones Difference
Bounded Matrices
Reset
y
y
yD
D
x
x
1ltx, 1lty -2ltx-ylt3
y0, 1ltx
x
x
Remove all bounds involving y and set y to 0
-1
-1
3
0
0
0
2
y
-1
y
0
25Improved DatastructuresCompact Datastructure for
Zones
RTSS 1997
-4
-4
x1-x2lt4 x2-x1lt10 x3-x1lt2 x2-x3lt2 x0-x1lt3 x3-x
0lt5
x1
x2
Shortest Path Closure O(n3)
x1
x2
4
10
2
3
3
2
3
-2
-2
2
2
x3
x0
x3
x0
1
5
5
26Improved DatastructuresCompact Datastructure for
Zones
RTSS 1997
-4
-4
x1-x2lt4 x2-x1lt10 x3-x1lt2 x2-x3lt2 x0-x1lt3 x3-x
0lt5
x1
x2
Shortest Path Closure O(n3)
x1
x2
4
10
2
3
3
2
3
-2
-2
2
2
x3
x0
x3
x0
1
5
5
-4
Shortest Path Reduction O(n3)
x1
x2
Canonical wrt Space worst O(n2)
practice O(n)
3
2
3
2
x3
x0
27Shortest Path Reduction1st attempt
Idea
An edge is REDUNDANT if there exists an
alternative path of no greater weight THUS
Remove all redundant edges!
ltw
w
Problem
v and w are both redundant Removal of one
depends on presence of other.
v
w
Observation If no zero- or negative cycles
then SAFE to remove all redundancies.
28Over-approximation Convex Hull
y
5
3
1
x
1
3
5
Convex Hull
29Hybrid Systems
30Vending Machine 1
Timed Automata
31Vending Machine 1
Behaviour
x
30
20
10
ord-cof
cup
del-cof
time
Timed Automata
32Vending Machine 2
Clocks -gt Continuous Variables
Hybrid Automata
Maler, Manna, Pnueli91
33Vending Machine 2
Clocks -gt Continuous Variables
Behaviour
T,H
100
50
cup
del-cof
ord-cof
t
Hybrid Automata
Maler, Manna, Pnueli91
34Vending Machine 3
Linear Hybrid Automata
Alur, Courcouretis, Henzinger, Ho93
35Vending Machine 3
Behaviour
T,H
100
50
cup
del-cof
ord-cof
t
HYTECH
Linear Hybrid Automata
Alur, Courcouretis, Henzinger, Ho93
36Symbolic Analysis Polyhedra
T
H
37Symbolic Analysis Polyhedra
T
H
38Symbolic Analysis Polyhedra
T
H
39Symbolic Analysis Polyhedra
T
The exploration may lead to generation of
infinitely many polyhedra gt No guarantee of
termination
?
H
?
Manipulation of polyhedra inefficient!
40TAs versus LHAs
- TOOLS
- UPPAAL, KRONOS,CMC,...
- Decidable
- Efficient Datastructure
- DBMs, NDDs, CDDs, ..
- Expressiveness
- TOOLS
- HYTECH, POLLUX,..
- Undecidability
- Datastructures
- Plyhedra
- Expressiveness
?
?
?
?
?
?
?
?
STOPWATCH AUTOMATA
x0 or x1
41STOPWATCH AUTOMATA
Cassez, Larsen, CONCUR00
- Extension of UPPAAL to SWA
- Reuse of efficient datastructures
- Overapproximation
- Every LHA may be translated into a SWA
- APPLICATIONS
- Scheduler
- Gasburner
- Water Level Control