Title: Folie 1
1RB Nusselt number, TC torque, pipe
friction Analogies between thermal convection
and shear flows by Bruno Eckhardt, Detlef
Lohse, SGn Philipps-University Marburg and
University of Twente
2ß
ß
ß
data cryogenic helium approximate power law
only exponent varies with Ra ß(Ra)
3 G 1/2
G 1
G 2
Data acetone, Pr 4.0 (105ltRalt1010)
G. Ahlers, SGn, D. Lohse Physik Journal 1 (2002)
Nr2, 31-37
4Physical origin of variable exponent Varying
weight of BL and bulk
5Variable exponent scaling in convective transport
6Funfschilling, Ahlers, et al. JFM 536, 145
(2005)
7Very large Ra scaling
8Nu versus Pr
G. Ahlers et al., PRL 84, 4357 (2000) PRL 86,
3320 (2001) K.-Q. Xia, S. Lam, S.-Q. Zhou, PRL
88, 064501 (2002)
9M. Couette, 1890 G.I. Taylor, 1923
? r1 / r2 0.83
Conditions for thin BLs d ltlt 2 p ri , G gtgt
1 (2p1)-1 0.14 ltlt ? lt 1 thus 5.4 gtgt s(?) gt
1 s(?) (ra/rg)4 2-1(1?)/v? 4
10Torque on inner cylinder
Kinematic torque independent of , of ,
if
Experimentally
11Torque 2pG versus R1 in TC
Lewis and Swinney, PRE 59, 5457 (1999)
r1 16 cm, r2 22 cm, ? 0.724 l 69.4cm, G
11.4 8 vortex state
G R1a
2p
R1 (r1?1d) / ?
log-law
12Reduced TC torque
data, variable exponent power law, log-law
B.Eckhardt, SGn, D.Lohse, 2006
13uf-profiles measured by Fritz Wendt 1933 r2
14.70cm, l 40cm, G 8.5 / 18 / 42 r1 10.00cm
/ 12.50cm / 13.75cm ? 0.68 / 0.85 / 0.94
?
?
?
-225
-180
-248
R18.47 104
4.95 104
2.35 104
N?M1/Mlam 52 37
21
Rw 2 670 1 580
820
d/d 1 / 100 1 / 80
1 / 58
14Exact analogies between RB, TC, Pipe
?
?
,Tas(ra?1d/?)2 s2-1(1?)/v? 4
?
15Torque 2pG versus R1
data variable exponent log-law
Reduced torque
B.Eckhardt, SGn, D.Lohse, 2006
16variable exponent
log-law
17Wind ur-amplitude increases less than control
parameter R1uf
Rw R1 1-? ? 0.10-0.05
friction factor f or cf
18 ? dependence of N?
r1/r2 ? 0.500
0.680
0.850
0.935
Data ? 0.935 ? 0.850 ? 0.680
(?LS 0.724)
Fritz Wendt, Ingenieurs-Archiv 4, 577-595 (1933)
19Skin friction coefficient ? 4 cf
from Hermann Schlichting, Grenzschichttheorie,
Fig.20.1
20Friction factor pipe flow
data variable exponent log-law
B.Eckhardt,SGn,D.Lohse, 2006
21Summary
1. Exact analogies between RB, TC, Pipe
quantities Nu Q/Qlam, M1/M1,lam, ?p/?plam or
cf Navier-Stokes based
2. Variable exponent power laws M1 R1a with
a(R1) etc due to varying weights of BLs
relative to bulk
3. Wind BL of Prandtl type, width 1/vRew ,
time dependent but not turbulent, explicit scale
L transport BL width 1/Nu
4. N, N?, Nu as well as ew decomposed into BL and
bulk contributions and modeled in terms of
Rew
5. Exact relations between transport currents N
and dissipation rates ew e elam ew
Pr-2 Ra (Nu1), s -2 Ta (N?-1), 2Re2(Nu-1)
6. Perspectives Verify/improve by higher
experimental precision. Explain very large Ra or
R1 behaviour, very small ?. Measure/calculate
profiles ?(r),ur,uz, etc and Ns, ews. Determine
normalized correlations/fit parameters
ci. Include non-Oberbeck-Boussinesque or
compressibility.