Honors Precalculus - PowerPoint PPT Presentation

1 / 30
About This Presentation
Title:

Honors Precalculus

Description:

Function all domain values (x) must be different. Is the ... Nonrigid transformations p. 47. Library of Functions. Cubic function. Practice. P. 49 #27-32 ... – PowerPoint PPT presentation

Number of Views:72
Avg rating:3.0/5.0
Slides: 31
Provided by: AEHard
Category:

less

Transcript and Presenter's Notes

Title: Honors Precalculus


1
Honors Precalculus
  • Chapter 1

2
  • Relation pairs of quantities that have a
    relationship
  • Function all domain values (x) must be different

3
Is the equation a function?
  • Slove for y
  • NO

4
Functions
  • Domain x values
  • left to right
  • Range y values
  • low to high

5
  • Independent x, domain value
  • Dependant y, range value

6
Domain
  • Graph -
  • Points -
  • Function see domain rules

7
Domain Rules
  • Polynomial -
  • Rational function -
  • Even radical -
  • Odd radical -

8
Piece-wise function
  • Example 4

9
Difference Quotient
10
Library of Functions
  • Line
  • Absolute Value

11
Library of functions
  • Radical function
  • Quadratic function

12
Section 1.3
13
Is it a function?
  • Graph
  • Points
  • Equation

14
Relative Extrema
  • Relative max
  • Relative min

15
Even and Odd Functions
  • Even
  • Odd

16
Even/Odd Graphs
  • Even symmetry in y-axis
  • Odd symmetry in origin

17
p. 40 83
  • Write the height h of the rectangle as a function
    of x

18
Section 1.4
  • Vertical and Horizontal shifts
  • Blue box p. 43
  • Reflections
  • Blue box p. 45
  • Stretch and shrink
  • Nonrigid transformations p. 47

19
Library of Functions
  • Cubic function

20
Practice
  • P. 49 27-32
  • P.49 15-26 on board

21
Section 1.5
  • Combinations of Functions

22

23
Composite functions
  • Domain - Restrict the outputs of g so that they
    are in the domain of f
  • Find the domain of g
  • Find the domain of the composite
  • Overlap

24
Class problems p. 59
  • 51 54
  • 55 60
  • 63 65

25
Section 1.6 Inverse Functions
  • Inverse notation

26
Definition of Inverse function
  • f(g(x)) x and g(f(x)) x

27
Graph of an Inverse
  • Inverse functions are reflected in the line y x

28
Does a function have an inverse?
  • Must be one-to-one
  • No two elements in the domain correspond to the
    same element in the range
  • Must pass the horizontal line test

29
Find the inverse of a function
  • Horizontal line test
  • Switch x and y
  • Solve for y
  • Write in function notation

30
(No Transcript)
Write a Comment
User Comments (0)
About PowerShow.com