Chapter 8 Rational Functions - PowerPoint PPT Presentation

1 / 46
About This Presentation
Title:

Chapter 8 Rational Functions

Description:

8.1 Inverse Variation: y = k/x. Direct Variation: y = kx ... Use your equation to find the average life span of a lion (heart rate 76 beats/min. ... – PowerPoint PPT presentation

Number of Views:277
Avg rating:3.0/5.0
Slides: 47
Provided by: briar8
Category:

less

Transcript and Presenter's Notes

Title: Chapter 8 Rational Functions


1
Chapter 8 Rational Functions
Definition. A rational function f is a
quotient f(x) g(x) / h(x) where g
and h are polynomials
2
Chapter 8 Rational Functions
8.1 Inverse Variation y k/x
Direct Variation y kx Constant of
Variation k (test yx y/x) 8.2 Graphing
Inverse Variation branches 2 curves, if
k then in I III quadrant if k
- then in II IV quadrant asymptotes
vertical x horizontal y
translations y k c translation of
yk/x x-b where vertical
asymptote at x b and horizontal at y
c 8.3 Rational Functions their Graph
rational functionf(x) g(x)/h(x) g(x) h(x)
polynomials continuous(smooth,no
breaks)/discontinuous (if h(x)0)
vertical asymptotesif no common factors, when
h(x)0 horizontal asymptotes if same
degree, y a/b if degree numeratorltdegree,
y0 if degree numeratorgtdenomin., no horiz.
asy. removeable discontinuity/hole common
linear factor 8.4 Simplifying/Multiplying
Dividing 8.5 Adding Subtracting (common
denominator) 8.6 Solving Rational Equations
cross multiplying 8.7 Probability of Multiple
Events mutually exclusive
independent/dependent
3
Chapter 8 Rational Functions
  • Key Terms
  • asymptote
  • branch
  • constant of variation
  • continuous
  • dependent
  • discontinuous
  • hole
  • independent
  • inverse variation
  • mutually exclusive
  • rational function
  • removable discontinuity
  • simplest form

4
Chapter 8 Rational Functions
  • Remember from Chapter 7
  • Key Terms
  • change of base formula - logb A (log A)/(log
    b)
  • common logarithm log with base 10
  • compound interest formula AP(1r/n)(nt)
  • continuously compounded interest APe(rt)
  • decay factor 0ltbgt1
  • exponential decay yabx when 0ltblt1
  • exponential equation yabx
  • exponential function f(x) abx
  • growth factor bgt1
  • half-life b0.5
  • logarithm log
  • natural logarithm function ln
  • radical equation equation with variable is raised
    to exp.

5
Name___________
  • Remember What does it look like?
  • Functions equation shape
  • Linear
  • Direct variation 1.a. B.
  • Constant 2.a. B.
  • Absolute value 3.a. B.
  • Quadratic 4.a. B.
  • Square root 5.a. B.
  • Cubic 6.a. B.
  • Exponential
  • Growth 7.a. B.
  • Decay 8.a. B.
  • Rational Functions
  • Inverse functions 9.a. B.

6
8-1 Exploring Inverse Variation
  • Youll learn to
  • 1. Identify Inverse Variation given a table of
    data
  • 2. Identify Direct Variation given a table of
    data
  • 3. Determine the constant of variation given
    the type of variation a point on the curve
  • 4. Write an equation given the type of
    variation a point on the curve

7
8-1 Exploring Inverse Variation
  • Inverse Variation y k/x
  • as one variable the other
  • Direct Variation y kx
  • as one variable the other
  • Constant of Variation k
  • test data for k yx or y/x

8
8-1 Exploring Inverse Variation (continued)
  • Examples
  • X 0.5 2 6
  • Y 1.5 6 18

9
8-1 Exploring Inverse Variation (continued)
  • Examples
  • X 0.5 2 6
  • Y 1.5 6 18
  • Test kyx .75 12 108
  • ky/x 3 3 3
  • So y/x 3
  • y 3x thus, direct variation

10
8-1 Exploring Inverse Variation (continued)
  • Examples
  • Determine whether inverse or direct variation.
    Write equation.
  • X 0.2 0.6 1.2
  • Y 12 4 2
  • Test k xy
  • k y/x

11
8-1 Exploring Inverse Variation (continued)
  • Examples
  • Each point is from a model for inverse variation.
    Find each constant of variation.
  • a. (3,7) b. (2.5, 1.5)
  • Write an equation for each of the above.
  • Each point is from a model for direct variation.
    Find an equation for each.
  • a. (4,8) b. ( 7,21)

12
8-1 Exploring Inverse Variation (continued)
  • Examples
  • Heart rates life spans of most mammals are
    inversely related. Write an equation to model
    this inverse variation. Use your equation to
    find the average life span of a lion (heart rate
    76 beats/min.).

Animal heart rate(beats/min) life
span(min) Mouse 634 1,576,800 Rabbit 158 6,
307,200 Horse 63 15,768,000 Cat 126 8,000,0
00
13
8-1 Exploring Inverse Variation (continued)
  • Examples
  • Heart rates life spans of most mammals are
    inversely related. Write an equation to model
    this inverse variation. Use your equation to
    find the average life span of a lion (heart rate
    76 beats/min.).

Animal heart rate(beats/min) life
span(min) Mouse 634 1,576,800 Rabbit 158 6,
307,200 Horse 63 15,768,000 Cat 126 8,000,0
00 Lion 76 ? Squirrel 190 ? Elephant 70yr
s
10yrs 27bpm
14
(No Transcript)
15
8.2 Graphing Inverse Variation
  • Youll learn to
  • 1. Identify asymptotes of an inverse function.
  • 2. Sketch an inverse function given its
    equation.
  • 3. Given a function its translated
    asymptotes, write an equation for the translated
    function.

16
8.2 Graphing Inverse Variation
  • branch
  • branch
  • branches 2 curves, if k then in I III
    quadrant
  • if k - then in II IV
    quadrant
  • asymptotes the lines the graph approaches
  • vertical x
  • horizontal y

17
8.2 Graphing Inverse Variation
  • Consider y 4/x, sketch the graph.
  • Using your calculator, graph the following,
  • vertical asymptote horizontal asymptote
  • y 4/x
  • y 4/x 2
  • y 4/x - 4
  • How are the graphs related?

18
8.2 Graphing Inverse Variation
  • Using your calculator, graph the following,
  • vertical asymptote horizontal asymptote
  • y 4/x
  • y 4
  • x - 2
  • y 4
  • x 4
  • How are the graphs related?

19
8.2 Graphing Inverse Variation
  • Translations of Inverse Variations
  • y k c translation of yk/x
  • x-b
  • where vertical asymptote at x b
  • and horizontal asymptote at y c
  • Example y 4 - 3
  • x 2
  • vertical asymptote at x
  • horizontal asymptote at y

20
8.2 Graphing Inverse Variation
  • Translations of Inverse Variations
  • y k c translation of yk/x
  • x-b
  • More Examples
  • Sketch y 1/x - 3
  • Sketch y - 5 - 4
  • x - 2
  • Write an equation for a translation of y 4/x
    with the given asymptotes,

21
(No Transcript)
22
8.3 Rational Functions Their Graphs
  • Youll learn to
  • 1. Classify a rational function as continuous
    or discontinuous.
  • 2. Discern between different discontinuities to
    identify vertical asymptotes removeable
    discontinuities or holes.
  • 3. Identify horizontal asymptotes.
  • 4. Identify behavior near asymptotes.

23
8.3 Rational Functions Their Graphs
  • Rational Function
  • A function that is the quotient of 2
    polynomials
  • f(x) g(x)
  • h(x)
  • where g(x) h(x) are polynomials
  • Examples
  • y(x2)(x-1) y -2x y
    1
  • (x1)
    (x21) (x2-4)

24
8.3 Rational Functions Their Graphs
  • Examples
  • Y - x 1 2. Y 1
  • x2 1
    x22x1
  • x2 1 0
  • x2 -1
  • no real value of x can
  • be squared -1, so
  • this is continuous

25
8.3 Rational Functions Their Graphs
  • Examples
  • Y - x 1 2. Y 1
  • x2 1
    x22x1
  • x2 1 0 x2 2x 1 0
  • x2 -1 (x 1 )(x 1 ) 0
  • x 1 0
  • no real value of x can x -1
  • be squared -1, so so this one is
  • this is continuous discontinuous

  • _at_ x -1

26
8.3 Rational Functions Their Graphs
  • Examples
  • Determine if continuous or discontinuous
  • Y - x 1 2. Y 1
  • x2 1
    x22x1
  • Y 1 4. Y x2 1
  • x2 16 x2 3
  • Y x 1
  • (x2 2x 6)

27
8.3 Rational Functions Their Graphs
  • Examples
  • Determine if continuous or discontinuous
  • Y - x 1 2. Y 1
  • x2 1
    x22x1
  • continuous discon. _at_ x -1
  • Y 1 4. Y x2 1
  • x2 16 x2 3
  • discon._at_ 4, -4 continuous
  • Y x 1
  • (x2 2x 6)
  • discontinuous _at_ x -1 /- 7

28
8.3 Rational Functions Their Graphs
  • Vertical asymptotes
  • There may be multiple vertical asymptotes
  • if no common factors, when h(x)0
  • Horizontal asymptotes
  • There is at most one horizontal asymptote
  • if same degree, y a/b
  • if degree numeratorltdegree denominator, y0
  • if degree numeratorgtdegree of denominator, no
    horizontal asymptotes

29
8.3 Rational Functions Their Graphs
  • Examples
  • y 3x 5 y 4x 2
  • x 2 x 3
  • y (x-2)(x2) y x2 4
  • x 2
    3x - 6

30
8.3 Rational Functions Their Graphs
  • Examples
  • y 3x 5 y 4x 2
  • x 2 x 3
  • discon. _at_ x 2, asym.
  • vertical asym. _at_ y 3/1
  • y (x-2)(x2) y x2 4
  • x 2
    3x - 6

31
8.3 Rational Functions Their Graphs
  • Examples
  • y 3x 5 y 4x 2
  • x 2 x 3
  • discon. _at_ x 2, asym. discon. _at_ x
    -3, asym.
  • vertical asym. _at_ y 3/1 vert. Asym. _at_ y
    4/1
  • y (x-2)(x2) y x2 4
  • x 2
    3x - 6

32
8.3 Rational Functions Their Graphs
  • Examples
  • y 3x 5 y 4x 2
  • x 2 x 3
  • discon. _at_ x 2, asym. discon. _at_ x
    -3, asym.
  • vertical asym. _at_ y 3/1 vert. Asym. _at_ y
    4/1
  • y (x-2)(x2) y x2 4
  • x 2
    3x - 6
  • discon. _at_ x 2, a hole
  • no vertical asymptote
  • Degree num. (2)gt denom.(1),
  • So no horizontal asymp.
  • Graph looks like y x 2 (line)
  • with a hole at x 2 (see in table)

33
8.3 Rational Functions Their Graphs
  • Examples
  • y 3x 5 y 4x 2
  • x 2 x 3
  • discon. _at_ x 2, asym. discon. _at_ x
    -3, asym.
  • vertical asym. _at_ y 3/1 vert. Asym. _at_ y
    4/1
  • y (x-2)(x2) y 2
  • x 2
    3x - 6
  • discon. _at_ x 2, a hole disc. At x
    6/32, asym.
  • no vertical asymptote degree
    numltdenom.,
  • Degree num. (2)gt denom.(1), so horiz.asy. _at_ y
    0
  • So no horizontal asymp.
  • Graph looks like y x 2 (line)
  • with a hole at x 2 (see in table)

34
8.3 Rational Functions Their Graphs
  • Examples
  • Y 1 2. Y 2x 3
  • (x 2) x 5
  • Y x2 6x9
  • x 3

35
(No Transcript)
36
(No Transcript)
37
8.4 Rational Expressions
  • Youll learn to
  • Simplify rational expressions
  • Multiply and divide rational expressions

38
8.4 Rational Expressions
  • Simplest Form when an expressions numerator
    and denominator are polynomials that have no
    common divisors
  • In simplest form Not in simplest form
  • X 2 x2
    1/x 2(x-3)
  • X-1 x2 3 x x1
    3(x-3)
  • You can simplify some expressions by dividing out
    common factors after you factor the expressions.

39
8.4 Rational Expressions
  • Factor and Simplify,
  • X2 10x 25 -27 x3y
  • X29x 20 9x4y
  • 6 3x 2x2 3x 2
  • X2 5x 6 x2 5x 6

40
8.5 Adding Subtracting Rational Functions
  • 8.5 Adding Subtracting (common denominator)

41
8.6 Solving Rational Equations
  • 8.6 Solving Rational Equations cross
    multiplying

42
8.7 Probability of Multiple Events
  • What youll learn
  • - Identifying independent and mutually exclusive
    events
  • - finding probabilities of multiple events

43
8.7 Probability of Multiple Events
  • 8.7 Probability of Multiple Events
  • mutually exclusive
  • independent/dependent
  • When the outcome of one event affects the outcome
    of a second event, the two events are dependent.
  • When the outcome of one event does not affect the
    outcome of a second event , the two are
    independent.
  • When two events cannot happen at the same time,
    the events are mutually exclusive.
  • Two situations 1. P(A B) dep/indep
  • 2. P (A or B)-exclusive?

44
8.7 Probability of Multiple Events
  • 8.7 Probability of Multiple Events
  • mutually exclusive
  • independent/dependent
  • Classify as dependent/independent
  • Roll a number cube. Then toss a coin.
  • Pick a flower from a garden. Then pick another
    flower from the same garden.
  • Select a marble from a bag. Replace it select
    another
  • Classify dependent as mutually exclusive or not
  • Rolling a 2 or a 3 on a number cube
  • Rolling an even number or a multiple of 3 on a
    number cube

45
8.7 Probability of Multiple Events
  • 8.7 Probability of Multiple Events AND
  • Independent spinning one pointer, then a
    separate one
  • If independent then P(AB) P(A) P(B).
  • P(A 1)
  • P(B 2)

46
8.7 Probability of Multiple Events
  • 8.7 Probability of Multiple Events OR
  • If mutually exclusive,
  • then P(A or B) P(A) P (B)
  • If NOT mutually exclusive,
  • then P(A or B) P(A) P (B) P(AB)
  • A die is rolled. Determine whether each event is
    mutually exclusive or inclusive. Then find the
    probability.
  • P(odd or greater than 2)
  • P(even or odd)
  • P( 6 or 8)
Write a Comment
User Comments (0)
About PowerShow.com