Uncertainty and Semantic web - PowerPoint PPT Presentation

About This Presentation
Title:

Uncertainty and Semantic web

Description:

With concrete domains reasoning using concrete data types ... constraints are used to represent uncertain background knowledge' using the OWL ... – PowerPoint PPT presentation

Number of Views:55
Avg rating:3.0/5.0
Slides: 62
Provided by: vizi7
Category:

less

Transcript and Presenter's Notes

Title: Uncertainty and Semantic web


1
Uncertainty and Semantic web
  • Jennifer Sleeman

2
Agenda
  • Define uncertainty
  • Provide background
  • Show areas of research
  • Highlight various approaches
  • Provide a demonstration of Pronto

3
Definition - Uncertainty
  • Knowledge can be inaccurate or incomplete
  • Knowledge can be imprecise or fuzzy
  • .leads to uncertainty

4
Definition - Uncertainty
  • Machine-readable information
  • Applications that work with random information
    (image processing, geospatial, information
    retrieval, etc.)
  • Ontology concept definitions
  • Vague concepts
  • Tall, Small, Big, .
  • Green, Blue, .
  • Few, Many, .
  • Semantic web services
  • .work with uncertainty

5
Background Description Logic Naming Conventions
Taken from Wikipedia 12.
6
Is representing uncertainty necessary?
  • Tim Berner-Lee rejection of uncertainty
  • Not necessary 7
  • Scalability issues 7

7
Can you describe knowledge using a monotonic
bivalent language7?
8
What about grey?
Uncertainty
9
Is it necessary?
Taken from 5 presented at the URSW 2008.
10
General Approaches to Uncertainty and Semantic
Web
  • Incomplete/Distorted knowledge 1
  • Possibility degrees alternatives
  • Inability to define concepts precisely 1
  • Degree of truth
  • Conflicting alternatives 1
  • Degree of probability
  • According to 1, since how we solve uncertainty
    problems depends upon the domain, it is hard to
    define a single language extension.

11
Areas of Research (based upon 2007/2008 URSW
Conference agendas)
  • Extending Semantic Web to support uncertainty
  • Fuzzy theory
  • Probability theory
  • Uncertainty and Ontologies
  • Uncertainty and Web Services

12
Extending the Semantic Web
  • Extend Semantic Web languages to support
    probabilistic, possibilistic, and fuzzy reasoning
  • Can be at the ontology layer or the rules layer
  • Within the ontology layer proposals for
  • Syntax and Semantics
  • Logical Formalisms

13
Fuzzy Theory
  • In classical set theory, the membership of
    elements in a set is assessed in binary terms
    according to a bivalent condition an element
    either belongs or does not belong to the set. By
    contrast, fuzzy set theory permits the gradual
    assessment of the membership of elements in a
    set this is described with the aid of a
    membership function valued in the real unit
    interval 0, 110

14
Fuzzy Approaches
  • Extending languages such as OWL with fuzzy
    extensions
  • Extending Description Logic with fuzzy extensions
  • If a language is extended, one must provide a way
    to support reasoning of the language with the
    fuzzy extension

15
Rules and Uncertainty
  • Rules Interchange Format
  • Rules Markup Language
  • For representing/interchanging rules
  • Attempt to provide ways to represent various
    types of uncertainty 1
  • Not as much recent attention as ontology layer
  • fuzzy RuleML defines way to specify membership
    degree 1
  • Example

Taken from 1.
16
Fuzzy RDF
  • Extends syntax and semantics of RDF
  • Triple extended to support real number on the
    interval 0,1
  • n s p o 13
  • Interpretation
  • Subject, object has degree of membership to
    extension of predicate 13
  • Satisfies statement if
  • Membership degree of subject, object to the
    extension of the predicate is gt to n 13

17
Fuzzy RDF
  • RDFS extended
  • Class extensions are fuzzy sets of domain
    elements 13
  • Domains are fuzzy and their assignment to
    properties can also be fuzzy 13
  • Inference engines can be extended to support such
    fuzziness

18
Fuzzy Description Logic
  • Fuzzy
  • One such proposal
  • Solve problem of representing and reasoning of
    fuzzy concepts
  • With concrete domains reasoning
    using concrete data types
  • With fuzzy version domains are fuzzy
  • Modifiers are supported (very, slightly, etc.)
    12

19
Fuzzy Description Logic
Non-fuzzy Concrete Domain
Concrete Fuzzy Domain
Taken from 12.
20
Fuzzy Description Logic
  • Interpretations are fuzzy
  • From satisfied/unsatisfied to a degree of truth
    0,1
  • Satisfiability of fuzzy axiom given fuzzy
    interpretation 12
  • Fuzzy axiom a logical consequence of a knowledge
    base iff every model in the knowledge base
    satisfies the fuzzy axiom 12
  • Reasoning a problem
  • Computationally no calculus exists to check for
    satisfiability of a fuzzy knowledge model 12

21
Fuzzy OWL
  • Extension of OWL
  • Example (describing the safety of a location)
  • Without fuzzy, the location is either safe or not
    safe
  • With fuzzy, the location is safe to a degree
  • Classes and properties are fuzzy
  • A class is considered a fuzzy set 1
  • A property is a fuzzy relation over a set 1

22
Fuzzy OWL
  • Requires extension of to map OWL
    entailment to satisfiability 4
  • Reasoning changes in that when concepts are
    represented as nodes in forest-like
    representations, a membership degree is
    associated with each node indicating it belongs
    to a concept 4
  • Degrees added to OWL facts

23
Fuzzy OWL
Taken from 4.
24
Probability Theory
  • ..the central objects of probability theory are
    random variables, stochastic processes, and
    events mathematical abstractions of
    non-deterministic events or measured quantities
    that may either be single occurrences or evolve
    over time in an apparently random fashion 11

25
PR-OWL
  • Developed as an extension to OWL (basically an
    upper ontology)
  • Represents complex Bayesian models 21
  • Uses MEBN logic rather than extending OWL
  • A first order Bayesian logic 21
  • Consists of entities and attributes
  • Attributes about entities and relationships to
    each other MEBN fragments (MFrag) 21
  • Represent conditional probability distribution
    21
  • MFrags organized into MEBN Theories (MTheories)
    21
  • Collectively satisfy consistency constraints 21
  • Goal
  • Provide a way to support Bayesian models

26
PR-OWL
Taken from 21.
27
BayesOWL
  • Express OWL ontologies as Bayesian networks by
    means of rules
  • For each node, a conditional probability table
    (CPT) is constructed 15
  • All subject and object classes translated into
    concept nodes 15
  • Arc drawn between 2 concept nodes if the 2
    classes are related by predicate 15
  • Direction based on class hierarchy
  • L-Nodes generated during translation to represent
    OWL logical operators
  • True/false value for each node indicates whether
    the instance belongs to the concept
  • CPTs are approximated using the iterative
    proportional fitting procedure (IPFP) 15
  • Restricted currently to OWL-DL taxonomies 15
  • Goals
  • Support ontology reasoning using probabilistic
    approach
  • Support ontology mapping

28
BayesOWL
rdfssubClassOf
owlintersectionOf
owlunionOf
owlcomplementOf owlequivalentClass
owldisjointWith
Taken from 15.
29
BayesOWL
  • DAG constructed
  • CPTs for L-Nodes specified
  • Concept nodes approximated using D-IPFP

Taken from 15.
30
BayesOWL
  • Reasoning Support 15
  • Concept satisfiability
  • Concept overlapping
  • Concept subsumption
  • Extensions to OWL to support probabilistic
    representation 15
  • PriorProb
  • CondProb
  • Concept Mapping 15

31
BayesOWL
Extensions to OWL Taken from 15.
32
Pronto
  • Non-monotonic probabilistic DL reasoner
  • Built on top of Pellet
  • Uses P-SHIQ(D) formalism 8
  • Expressing uncertain axioms
  • Syntax based upon Lukasiewiczs conditional
    constraints 8
  • Probabilistic Reasoning
  • Lehmanns lexicographic entailment 8
  • Represents uncertain ontological knowledge and
    reasoning 8
  • Capable of representing uncertainty in both ABox
    and TBox axioms 8
  • All inferences are done in a totally logical
    way (no translation) 8
  • Uses OWL 1.1 axiom annotations to associate
    probability intervals with uncertain OWL axioms
    8
  • Doesnt scale beyond 15 generic (TBox)
    conditional constraints 9

33
Pronto
  • Conditional constraints
  • (DC)l,u
  • C and D concepts in P-SHIQ(D)
  • l,u closed interval within 0,1
  • Supports overriding
  • Can handle certain probabilistic conflicts
  • Flying birds/penguin problem
  • Pronto allows more specific constraints to
    override more generic ones 9
  • if Pronto knows that Tweety is a Penguin and
    Penguin is a subclass-of Bird, it will override
    the constraint (FlyingObjectBird)0.91.0 by
    (FlyingObjectPenguin)0.00.05 and correctly
    entail Tweety(FlyingObjectowlThing)0.00.05.
    9

34
Uncertainty and Ontologies - Mapping
  • Mapping a problem
  • Existing approaches - combination of syntactic
    and semantic measures 18, use machine learning,
    or linguistics and natural language processing
    15
  • Quality varies depending upon domain 18
  • Wang argues without use of a thesaurus,
    inaccuracies will occur 22
  • Problem
  • When mapping a concept from ontology A to
    ontology B there isnt always a single concept
    match but rather a number of concepts that match
    to some degree

35
Uncertainty and Ontologies - Mapping
  • A proposed truth theory solution based on the
    following 18
  • Dempster-Shafer, uncertain reasoning over
    potential mappings
  • Evidence Theory
  • Similarity matrix comparing all
    concepts/properties
  • Similarity measure of a concept between O1 and O2
  • DS combines evidence learned to form new belief
  • Promising approach
  • Multi-agent ontology mapping framework 18
  • Not domain dependent
  • Doesnt require large amounts of training data

36
Uncertainty and Ontologies - Mapping
  • A proposed solution by Wang 22
  • ACAOM
  • Uses WordNet to calculate similarities for node
    names
  • Name based mapping
  • Instance strategy
  • More semantics more feasible to match
  • Documents assigned to nodes
  • Uses vector space models to rank matches

37
Uncertainty and Ontologies - Mapping
  • BayesOWL 15 also proposed a solution
  • Argue that existing similarity approaches will
    not work
  • If degree of similarity is not present in both
    concepts being matched 15
  • If concept itself is fuzzy 15
  • Uses BayesOWL and belief propagation between BNs
    15
  • Ontologies are first translated into BNs 15
  • Use probabilistic evidence reasoning to determine
    match 15

38
Uncertainty and Ontologies An Ontology of
Uncertainty
  • Proposed by the W3C UR3W-XG group
  • Provides a vocabulary for representing different
    types of uncertainty
  • Was a good start but refinement needed 20
  • Strategy to use such an ontology as a way to
    drive a reasoner
  • Open issue coordination of reasoning of
    different uncertainty models in knowledge base
    19
  • Uses SWRL rules to assign uncertainty to each
    relation 19

39
Uncertainty and Ontologies An Ontology of
Uncertainty
Taken from 20.
40
Uncertainty and Web Services
  • Service discovery what is best service for
    request?
  • Matching goal to service
  • Brokers used for filtering
  • Semantic Web Service Framework
  • Semantic Web Service Language
    concepts/descriptions 17
  • Semantic Web Service Ontology conceptual model
    17
  • It is argued that current frameworks use first
    order and description logics and goal
    capabilities are based on subsumption checking
    or query-answering16
  • Proposed approach uses Incident Calculus 16

41
Demo - Pronto
  • Pronto Example Breast Cancer Risk Models
  • Models 2 types of risks absolute and relative
  • Combining risk factors to determine likelihood of
    breast cancer for a woman 8
  • Distinction between known and inferred
  • Pronto uses an ontology for knowledge
  • Uses probabilistic statements to enable
    computable inferencing 8
  • The probabilistic statements complement the OWL
    syntax

42
Demo - Pronto
  • Risk factors relevant to breast cancer are
    subclasses of RiskFactor
  • Categories of women that have certain risk
    factors are subclasses of WomanWithRiskFactors
  • Women with risk of developing cancer subclass
    WomanUnderBRCRisk
  • The goal
  • Compute the probability that a certain woman is
    an instance of some WomanUnderBRCRisk subclass
    given that she is an instance of some
    WomanWithRiskFactors subclass 8
  • Infer generic probabilistic subsumption between
    classes under WomanUnderBRCRisk and under
    WomanWithRiskFactors 8
  • Conditional constraints are used to represent
    uncertain background knowledge using the OWL
    1.1 axiom annotations 8
  • The demo defines constraints to express how risk
    factors influence the risk of developing cancer
    8
  • Pronto combines the factors and computes the
    probability that a woman is an instance of a
    subclass of WomanUnderBRCRisk

43
Demo - Pronto
  • ltowlObjectProperty rdfabout"hasRiskFactor"gt
  • ltrdfsdomain rdfresource"Person"/gt
  • ltrdfsrange rdfresource"RiskFactor"/gt
  • lt/owlObjectPropertygt
  • ltowlClass rdfabout"WomanTakingEstrogen"gt
  • ltowlequivalentClassgt
  • ltowlRestrictiongt
  • ltowlonProperty
    rdfresource"hasRiskFactor"/gt
  • ltowlsomeValuesFrom
    rdfresource"Estrogen"/gt
  • lt/owlRestrictiongt
  • lt/owlequivalentClassgt
  • ltrdfssubClassOf rdfresource"Woman"/gt
  • lt/owlClassgt
  • Taken from http//clarkparsia.com/pronto/cancer_ra
    .owl

44
Demo - Pronto
  • ltowlClass rdfabout"WomanWithRiskFactors"gt
  • ltowlequivalentClassgt
  • ltowlClassgt
  • ltowlintersectionOf
    rdfparseType"Collection"gt
  • ltrdfDescription
    rdfabout"Woman"/gt
  • ltowlRestrictiongt
  • ltowlonProperty
    rdfresource"hasRiskFactor"/gt
  • ltowlsomeValuesFrom
    rdfresource"RiskFactor"/gt
  • lt/owlRestrictiongt
  • lt/owlintersectionOfgt
  • lt/owlClassgt
  • lt/owlequivalentClassgt
  • ltrdfssubClassOf rdfresource"Woman"/gt
  • lt/owlClassgt
  • Taken from http//clarkparsia.com/pronto/cancer_ra
    .owl

45
Demo - Pronto
  • ltowlClass rdfabout"WomanAgedUnder50"gt
  • ltowlequivalentClassgt
  • ltowlClassgt
  • ltowlintersectionOf
    rdfparseType"Collection"gt
  • ltrdfDescription
    rdfabout"Woman"/gt
  • ltowlRestrictiongt
  • ltowlonProperty
    rdfresource"hasAge"/gt
  • ltowlsomeValuesFrom
    rdfresource"AgeUnder50"/gt
  • lt/owlRestrictiongt
  • lt/owlintersectionOfgt
  • lt/owlClassgt
  • lt/owlequivalentClassgt
  • ltrdfssubClassOf rdfresource"WomanWithR
    iskFactors"/gt
  • lt/owlClassgt
  • Taken from http//clarkparsia.com/pronto/cancer_ra
    .owl

46
Demo - Pronto
  • ltowlClass rdfabout"WomanUnderAbsoluteBRCRisk"
    gt
  • ltowlequivalentClassgt
  • ltowlClassgt
  • ltowlintersectionOf
    rdfparseType"Collection"gt
  • ltrdfDescription
    rdfabout"Woman"/gt
  • ltowlRestrictiongt
  • ltowlonProperty
    rdfresource"hasRisk"/gt
  • ltowlsomeValuesFrom
    rdfresource"AbsoluteBRCRisk"/gt
  • lt/owlRestrictiongt
  • lt/owlintersectionOfgt
  • lt/owlClassgt
  • lt/owlequivalentClassgt
  • lt/owlClassgt
  • Taken from http//clarkparsia.com/pronto/cancer_ra
    .owl

47
Demo - Pronto
  • ltowlClass rdfabout"WomanUnderBRCRisk"gt
  • ltowlequivalentClassgt
  • ltowlClassgt
  • ltowlintersectionOf
    rdfparseType"Collection"gt
  • ltrdfDescription
    rdfabout"Woman"/gt
  • ltowlRestrictiongt
  • ltowlonProperty
    rdfresource"hasRisk"/gt
  • ltowlsomeValuesFrom
    rdfresource"BRCRisk"/gt
  • lt/owlRestrictiongt
  • lt/owlintersectionOfgt
  • lt/owlClassgt
  • lt/owlequivalentClassgt
  • lt/owlClassgt
  • Taken from http//clarkparsia.com/pronto/cancer_ra
    .owl

48
Demo - Pronto
  • ltowlClass rdfabout"WomanUnderIncreasedBRCRisk"
    gt
  • ltowlequivalentClassgt
  • ltowlClassgt
  • ltowlintersectionOf
    rdfparseType"Collection"gt
  • ltowlRestrictiongt
  • ltowlonProperty
    rdfresource"hasRisk"/gt
  • ltowlsomeValuesFrom
    rdfresource"IncreasedBRCRisk"/gt
  • lt/owlRestrictiongt
  • ltrdfDescription
    rdfabout"WomanUnderBRCRisk"/gt
  • lt/owlintersectionOfgt
  • lt/owlClassgt
  • lt/owlequivalentClassgt
  • lt/owlClassgt
  • Taken from http//clarkparsia.com/pronto/cancer_ra
    .owl

49
Demo - Pronto
  • ltowlClass rdfabout"WomanUnderLifetimeBRCRisk"gt
  • ltowlequivalentClassgt
  • ltowlClassgt
  • ltowlintersectionOf
    rdfparseType"Collection"gt
  • ltrdfDescription
    rdfabout"Woman"/gt
  • ltowlRestrictiongt
  • ltowlonProperty
    rdfresource"hasRisk"/gt
  • ltowlsomeValuesFrom
    rdfresource"LifetimeBRCRisk"/gt
  • lt/owlRestrictiongt
  • lt/owlintersectionOfgt
  • lt/owlClassgt
  • lt/owlequivalentClassgt
  • ltrdfssubClassOf rdfresource"WomanUnder
    AbsoluteBRCRisk"/gt
  • lt/owlClassgt
  • Taken from http//clarkparsia.com/pronto/cancer_ra
    .owl

50
Demo - Pronto
  • ltowlClass rdfabout"WomanUnderModeratelyIncrea
    sedBRCRisk"gt
  • ltowlequivalentClassgt
  • ltowlClassgt
  • ltowlintersectionOf
    rdfparseType"Collection"gt
  • ltrdfDescription
    rdfabout"WomanUnderIncreasedBRCRisk"/gt
  • ltowlRestrictiongt
  • ltowlonProperty
    rdfresource"hasRisk"/gt
  • ltowlsomeValuesFrom
    rdfresource"ModeratelyIncreasedBRCRisk"/gt
  • lt/owlRestrictiongt
  • lt/owlintersectionOfgt
  • lt/owlClassgt
  • lt/owlequivalentClassgt
  • ltrdfssubClassOf rdfresource"WomanUnder
    IncreasedBRCRisk"/gt
  • ltowldisjointWith rdfresource"WomanUnde
    rStronglyIncreasedBRCRisk"/gt
  • lt/owlClassgt
  • Taken from http//clarkparsia.com/pronto/cancer_ra
    .owl

51
Demo - Pronto
  • ltowlClass rdfabout"WomanUnderModeratelyReduce
    dBRCRisk"gt
  • ltowlequivalentClassgt
  • ltowlRestrictiongt
  • ltowlonProperty
    rdfresource"hasRisk"/gt
  • ltowlsomeValuesFrom
    rdfresource"ModeratelyReducedBRCRisk"/gt
  • lt/owlRestrictiongt
  • lt/owlequivalentClassgt
  • ltrdfssubClassOf rdfresource"WomanUnder
    ReducedBRCRisk"/gt
  • ltowldisjointWith rdfresource"WomanUnde
    rStronglyReducedBRCRisk"/gt
  • ltowldisjointWith rdfresource"WomanUnde
    rWeakelyReducedBRCRisk"/gt
  • lt/owlClassgt
  • Taken from http//clarkparsia.com/pronto/cancer_ra
    .owl

52
Demo - Pronto
  • lt!--Lifetime absolute risk--gt
  • lt!-- Any woman has a 12.3 risk of lifetime
    breast cancer --gt
  • ltowl11Axiomgt
  • ltrdfsubject rdfresource"Woman"/gt
  • ltrdfpredicate rdfresource"rdfssubClas
    sOf"/gt
  • ltrdfobject rdfresource"WomanUnderLifet
    imeBRCRisk"/gt
  • ltprontocertaintygt00.123lt/prontocertaint
    ygt
  • lt/owl11Axiomgt
  • lt!-- If a woman has BRCA mutation, then the
    risk is beteen 30 and 85 --gt
  • ltowl11Axiomgt
  • ltrdfsubject rdfresource"WomanWithBRCAM
    utation"/gt
  • ltrdfpredicate rdfresource"rdfssubClas
    sOf"/gt
  • ltrdfobject rdfresource"WomanUnderLifet
    imeBRCRisk"/gt
  • ltprontocertaintygt0.30.85lt/prontocertain
    tygt
  • lt/owl11Axiomgt
  • lt!-- If it's BRCA1 mutation, then the
    lifetime risk is between 60 and 80 --gt

53
Demo - Pronto
  • lt!-- Age-related risk--gt
  • ltowl11Axiomgt
  • ltrdfsubject rdfresource"WomanAgedUnder
    20"/gt
  • ltrdfpredicate rdfresource"rdfssubClas
    sOf"/gt
  • ltrdfobject rdfresource"WomanUnderShort
    TermBRCRisk"/gt
  • ltprontocertaintygt00.0005lt/prontocertain
    tygt
  • lt/owl11Axiomgt
  • ltowl11Axiomgt
  • ltrdfsubject rdfresource"WomanAged2030"
    /gt
  • ltrdfpredicate rdfresource"rdfssubClas
    sOf"/gt
  • ltrdfobject rdfresource"WomanUnderShort
    TermBRCRisk"/gt
  • ltprontocertaintygt00.004lt/prontocertaint
    ygt
  • lt/owl11Axiomgt
  • ltowl11Axiomgt
  • ltrdfsubject rdfresource"WomanAged3040"
    /gt
  • ltrdfpredicate rdfresource"rdfssubClas
    sOf"/gt
  • ltrdfobject rdfresource"WomanUnderShort
    TermBRCRisk"/gt

54
Demo - Pronto
  • ltowl11Axiomgt
  • ltrdfsubject rdfresource"WomanAged4050"
    /gt
  • ltrdfpredicate rdfresource"rdfssubClas
    sOf"/gt
  • ltrdfobject rdfresource"WomanUnderShort
    TermBRCRisk"/gt
  • ltprontocertaintygt00.025lt/prontocertaint
    ygt
  • lt/owl11Axiomgt
  • ltowl11Axiomgt
  • ltrdfsubject rdfresource"WomanAged5060"
    /gt
  • ltrdfpredicate rdfresource"rdfssubClas
    sOf"/gt
  • ltrdfobject rdfresource"WomanUnderShort
    TermBRCRisk"/gt
  • ltprontocertaintygt00.035lt/prontocertaint
    ygt
  • lt/owl11Axiomgt
  • ltowl11Axiomgt
  • ltrdfsubject rdfresource"WomanAged6070"
    /gt
  • ltrdfpredicate rdfresource"rdfssubClas
    sOf"/gt

55
Demo - Pronto
  • lt!--owl11Axiomgt
  • ltrdfsubject rdfresource"Julie"/gt
  • ltrdfpredicate rdfresource"rdftype"/gt
  • ltrdfobject rdfresource"WomanAged3040"/
    gt
  • ltprontocertaintygt11lt/prontocertaintygt
  • lt/owl11Axiomgt
  • ltowl11Axiomgt
  • ltrdfsubject rdfresource"Mary"/gt
  • ltrdfpredicate rdfresource"rdftype"/gt
  • ltrdfobject rdfresource"WomanWithBRCA1M
    utation"/gt
  • ltprontocertaintygt11lt/prontocertaintygt
  • lt/owl11Axiomgt
  • ltowl11Axiomgt
  • ltrdfsubject rdfresource"Ann"/gt
  • ltrdfpredicate rdfresource"rdftype"/gt
  • ltrdfobject rdfresource"WomanWithMother
    BRCAffected"/gt
  • ltprontocertaintygt11lt/prontocertaintygt

56
Demo - Pronto
  • ltowl11Axiomgt
  • ltrdfsubject rdfresource"Helen"/gt
  • ltrdfpredicate rdfresource"rdftype"/gt
  • ltrdfobject rdfresource"PostmenopausalW
    oman"/gt
  • ltprontocertaintygt11lt/prontocertaintygt
  • lt/owl11Axiomgt
  • ltowl11Axiomgt
  • ltrdfsubject rdfresource"Helen"/gt
  • ltrdfpredicate rdfresource"rdftype"/gt
  • ltrdfobject rdfresource"WomanTakingEstr
    ogen"/gt
  • ltprontocertaintygt11lt/prontocertaintygt
  • lt/owl11Axiomgt
  • ltowl11Axiomgt
  • ltrdfsubject rdfresource"Helen"/gt
  • ltrdfpredicate rdfresource"rdftype"/gt

57
Demo - Pronto
  • ltowl11Axiomgt
  • ltrdfsubject rdfresource"AshkenaziJewis
    hWoman"/gt
  • ltrdfpredicate rdfresource"rdfssubClas
    sOf"/gt
  • ltrdfobject rdfresource"WomanWithBRCAMu
    tation"/gt
  • ltprontocertaintygt0.0250.025lt/prontocert
    aintygt
  • lt/owl11Axiomgt
  • ltowl11Axiomgt
  • ltrdfsubject rdfresource"WomanWithBRCAM
    utation"/gt
  • ltrdfpredicate rdfresource"rdfssubClas
    sOf"/gt
  • ltrdfobject rdfresource"WomanUnderLifet
    imeBRCRisk"/gt
  • ltprontocertaintygt0.30.85lt/prontocertain
    tygt
  • lt/owl11Axiomgt

58
Demo - Pronto
  • Running query (generic TBox conditional
    constraint) (CD)l,u 9
  • entail http//clarkparsia.com/pronto/cancer_ra.owl
    AshkenaziJewishWoman http//clarkparsia.com/pront
    o/cancer_ra.owlWomanUnderLifetimeBRCRisk

59
Demo - Pronto
  • Query entail
  • Result 34 (WomanUnderLifetimeBRCRiskAshkenaziJe
    wishWoman)0.00750.123
  • Explanation
  • Explaining the generic constraint 34
    (WomanUnderLifetimeBRCRiskAshkenaziJewish
  • Woman)0.00750.123
  • Lower bound is because of
  • 8 (WomanWithBRCAMutationAshkenaziJewishWoman)
    0.0250.025, 7 (WomanUnderLi
  • fetimeBRCRiskWomanWithBRCAMutation)0.30.85
  • Upper bound is because of
  • 10 (WomanUnderLifetimeBRCRiskWoman)0.00.123
  • Result computed in 6266ms

60
Want to learn more?
  • Attend the 2009 URSW Conference
  • http//c4i.gmu.edu/ursw/2009/
  • Visit W3C Uncertainty Reasoning for the World
    Wide Web Incubator Group
  • http//www.w3.org/2005/Incubator/urw3/
  • Review presentations from last years conference
  • http//c4i.gmu.edu/ursw/2008/
  • Download Pronto
  • http//pellet.owldl.com/pronto/
  • Download FiRE
  • http//www.image.ece.ntua.gr/nsimou/FiRE/

61
References
  • 1 - Stoilos,Simou,Stamou,Kollias,Uncertainty
    and the Semantic Web, http//www.image.ece.ntua.g
    r/php/savepaper.php?id445, 2006, IEEE
  • 2 2008 Conference, Uncertainty Reasoning for
    the Semantic Web, http//c4i.gmu.edu/ursw/2008/in
    dex.html
  • 3 - 2007 Conference, Uncertainty Reasoning
    for the Semantic Web, http//c4i.gmu.edu/ursw/200
    7/index.html
  • 4 - Stoilos,Stamou,Tzouvaras,Pan,Horrocks,
    Fuzzy OWL Uncertainty and the Semantic Web,
    http//www.image.ntua.gr/papers/398.pdf
  • 5 - Lassila, Some Personal Thoughts on
    Semantic Web and Non-symbolic AI,
    http//c4i.gmu.edu/ursw/2008/talks/URSW2008_Keynot
    e_Lassila.pdf, 2008, ISWC
  • 6 Williams,Bastin,Cornford,Ingram,
    Describing and Communicating Uncertainty within
    the Semantic Web, http//c4i.gmu.edu/ursw/2008/pa
    pers/URSW2008_F3_WilliamsEtAl.pdf
  • 7 Sanchez, Fuzzy logic and semantic web,
    http//books.google.com/books?idCidej8b4ESICpgP
    A4lpgPA4dqmonotonicbivalentlanguagesourceb
    lotsmtbZcZfaO7sigVtGqKXu-rrzl5HOw36UBTeTpdoEh
    leneisBIASpuJFonItgeKnpyTBwsaXoibook_result
    ctresultresnum1PPP1,M1
  • 8 Klinov, Parsia, Demonstrating Pronto a
    Non-monotonic Probabilistic OWL Reasoner,
    http//www.webont.org/owled/2008dc/papers/owled200
    8dc_paper_2.pdf
  • 9 Klinov, Introducing Pronto Probabilistic
    DL Reasoning in Pellet, http//clarkparsia.com/we
    blog/2007/09/27/introducing-pronto/
  • 10 Wikipedia Fuzzy Set theory,
    http//en.wikipedia.org/wiki/Fuzzy_set
  • 11 Wikipedia Probability Theory,
    http//en.wikipedia.org/wiki/Probability_theory
  • 12 Straccia, A Fuzzy Description Logic for
    the Semantic Web, http//www.win.tue.nl/aserebre
    /ks/Lit/Straccia2006.pdf
  • 13 Mazzieri, Dragoni, A Fuzzy Semantics for
    Semantic Web Languages, http//ftp.informatik.rwt
    h-aachen.de/Publications/CEUR-WS/Vol-173/paper2.pd
    f
  • 14 Wikipedia Description Logic,
    http//en.wikipedia.org/wiki/Description_logic
  • 15 Ding, Peng, Pan, BayesOWL Uncertainty
    Modeling in Semantic Web Ontologies,
    http//ebiquity.umbc.edu/_file_directory_/papers/2
    17.pdf
  • 16 Martin-recurerda1, Robertson2, Discovery
    and Uncertainty in Semantic Web Services,
    http//ftp.informatik.rwth-aachen.de/Publications/
    CEUR-WS/Vol-173/paper4.pdf
  • 17 Semantic Web Services Framework (SWSF)
    Overview, http//www.w3.org/Submission/SWSF/
  • 18 Nagy,Vargas-Vera,Motta, Uncertain
    Reasoning for Creating Ontology Mapping on the
    Semantic Web, http//c4i.gmu.edu/ursw/2007/files/
    papers/URSW2007_P2_NagyVeraMotta.pdf
  • 19 Ceravolo, Damiani,Leida, Which Role for
    an Ontology of Uncertainty?, http//c4i.gmu.edu/u
    rsw/2008/papers/URSW2008_P6_CeravoloEtAl.pdf
Write a Comment
User Comments (0)
About PowerShow.com