Title: LHCPredictions, 607 CERN 1
1Black Holes at LHC ? Horst StöckerFIAS
Frankfurt Institute for Advanced Studies
1 The Hierarchy-problem and LXD - Large eXtra
Dimensions 2 Black Holes in pp _at_ LHC 108 p.a.
- due to LXDs? 3 Di-Jet Suppression- Signals
TeV-BHs ALICE, ATLAS, CMS 4 Muliple Mono-Jets
from Hawking-Evaporating - Signal TeV-BHs 5
Stable charged TeV-BH-Remnants - Observable as
TRACK in TPC 6 BH- Production 1000enhanced in
PbPb events _at_ 5.5 ATeV 7 BH - Black holes ?
Hawking gt White holes!
2(No Transcript)
3(No Transcript)
4Focus 32/1999
5The hierarchy problem
- Why is gravity so much weaker than the other
forces of nature ? - The electroweak scale MZ,W 100 GeV
- The Planck scale MPlanck 1019 GeV 10-8
kg - PDG review MPlanck is defined to be the energy
scale where the - gravitational interactions of elementary
particles become - comparable to gauge interactions
- PDG review It is possible that supersymmetry
may ultimately explain the origin of this
hierarchy. - Why? Supersymmetry can make the hierarchy stable,
while in the Standard Model alone this is not
possible. - Today, well look at an alternative, proposed
solution to the hierarchy problem, i.e. to why
gravity is so weak.
6Models with Large Extra Dimensions LXD d 1,
2,, 6, 7 ? SUSY 317 Dim
Main motivation hierarchy problem Why is
gravitation so weak? String theory suggests XDs
but it is hard to make predictions
- Effective theories with LXDs
- Arkani-Hamed, Dimopoulos Dvali (ADD)
- Randall Sundrum (RS)
- Universal Extra Dimensions (UXD)
- Warped and more ...
7The ADD model
- 3d space like dimensions
- d dimensions on d-torus with radii R
- only gravity propagates in all dimensions (bulk)
- all other fields propagate only in 4-dim. space
time (brane)
Our world embedded into d compactified LXD
N. Arkani-Hamed, S. Dimopoulos and G. R. Dvali,
PLB 429, 263 (1998)
8How do they look like?
9Now lets (re)move the hierarchy problem Wed
like MPl MW,Z
- Setting
- MPlank 1 TeV,
- one obtains
- Experimentally, it turns out that F 1/r 2 has
only been verified down to distances ?1mm(1998),
0.15mm(2002), 0.044 mm(2006) - Therefore, large spatial extra dimensions,
compactified at a sub-millimeter scale are, in
principle, allowed! - If this is the case, gravity can be 1038 times
stronger than what we think!
10LHC
11Black Holes in ADD- model, D 4 d Dim number
of extra dimensions d1,2,,6,7
Schwarzschild radius RH modified!
Myers and Perry, Ann. of Phys. 172 (1986)
Landsberg Giddins LHCBH factory BH-
Production 10 nb p-p _at_LHC 1Hz at full
L mb in PbPb
The Sun
BH at LHC
RH proton large in d-LXD
12Large BH-Production Probabilities in ADDLHC - a
Black Hole Factory?Landberg GiddinsPRL 2001
No fundamental scattering operator for
Model the black disc cross section
Hoop-conjecture (K.Thorne) Critical impact
parameter b R-horizon
Parton model fold structure function with
BH-formfactor
13PbPb
pp
Bleicher, Hofmann, Hossenfelder, Stoecker
Hossenfelder Phys.Lett.B59882-98,2004
Phys.Lett. B54873-76,2002 Review H.
Stoecker, J. Phys. G Nucl. Part. Phys.
32(2006)429
14Conical Flow in AdS/CFT
(Friess, Gubser, Michalogiorgakis, Pufu
hep-th/0607022)
String theory study of Heavy Quark motion in
strongly coupled N4 SYM
Herzog et al.
Drag
JCS Teaney
Gubser
Energy Density
Looking at T00 they found the shock waves in N4
SYM
This is a dynamical model. No assumption about
hydro- dynamical behavior is made!
15 LXD-BHs dominate pQCD 10-fold at M 1 TeV !
Hewett, Lillie, Rizzo hep-ph/0503178
16Signals of LXD-BHs in early pp running !
- 1 Suppressed QCD-Di-Jets _at_ 2pt gt M 1TeV
- 2 Emission of Multiple Mono-Jets (Hawking Rad.)
- gt Jet Enhancement for pT gt 100 GeV
- 3 Stable Black Hole Remnant
- gt Charged BH -gt single Track in TPC
- gt neutral BH -gt large (TeV) missing energy
- gt Hawking Monojets _at_ pT 100 GeV
17 1 High pT- Di-Jet -Suppression in pp at LHC
Di-Jets with 2pt M gt Mf vanish behind
Schwarzschild-Radius
High pT Mf suppression in AB -gt Jet
(pT)X gt Jet(pT) ltlt Jet(pT)
in LXDs in D4 gt High pt-
physics hidden behind horizon
18IF (LXD- Black Holes at 14 TeV in pp_at_ LHC).THEN.
(NO High pT- events, No 2500GeV Di-Jets_at_LHC
QCD
d 7
QCD
LXD-BHs gt No Di-Jets w. ME1E2 gt 1 TeV
ALICE can differentiate LXD- BHs from QCD-
Background! (see T. Humanic, ALICE Int. Note)
192 Mini - Black Hole evaporates WHITE HOLES!
- emitts very hard multiple Monojets due to
microcanonic Hawking- Radiation of SMP
SuSy-Partners into Brane (31Dim) S-, C-,
B-, T- quarks equally abundant! Kaluza-
Klein Tower excitations (Grav) into BULK (d- Dim)
20Evaporation of BHs in D 4d
Connection between
Schwarzschild surface lt------gt Entropy of a BH
Single particle spectrum
Kraus, Wilczek Nucl.Phys.B 433
(1995) Casadio, Harms MICRO! Phys.Rev. D64
(2001)...
Evaporation rate
Lifetime LHC BH (d4, Mf1TeV)
21Radiation into the LXDs
- Part of Hawking radiation into LXDs
- Missing energy lost to our 3-Dim universe
- Maybe difficult to find if radiation dominated by
gravitons - Black Holes ?
- gt WHITE Holes
22Event Characteristics
- For microscopic BHs,
- t (MBH)3 10-27 s, decays are essentially
instantaneous - TH 1/MBH 100 GeV, so not just photons
- q,g l g n,G 75 15 2 8
- Multiplicity 10
- Spherical events with leptons, many quark and
gluon jets
De Roeck (2002)
23 (_at_14TeV)
Hossenfelder, Hofmann, Bleicher, Stöcker
Phys.Rev.D66101502,2002 Lönnblad, Sjödahl
hep-ph/0505181
24Simulated Decaying Black Hole event - ATLAS
detector
Courtesy Laurent Vacavant
25What would a mini-black hole produced at LHC look
like?
- Decay process
- Mini black holes produced at LHC would be light
tiny, compared to cosmic black holes. (TeV
versus gt3 Solar masses) - As a result, they would be extremely hot (T100
GeV) and evaporate almost instantaneously, mainly
via Hawking radiation. - Democratic production Hawking radiation produces
particle/antiparticle pairs for all degrees of
freedom accessible around 100 GeV, at roughly
equal rates. - An Alternative Einstein- Gauss- Bonnet string
gravity-/Lovelock Terms - Stable Black Hole Remnants
possible, M 1 TeV! - Decay Signature
- Average of 5-10 Monojets (of 100 GeV) for
each decay, emitted spherically - 120 Particle degrees of freedom ? 1 chance
for each. - Summing over spin and color gives
- 75 quarks and gluons -gt Jets
- 10 charged high pt leptons -gt Trigger
- 5 neutrinos missing energy
- 5 photons or W/Z bosons
- Also get new particles around 100 GeV, including
light highs (1 ?) - Small fraction of invisible neutrinos and
gravitons ? BHs easy reconstructed
Courtesy Sven Vahsen
263 Stable BH-Remnant - left after Evaporation?
GUP QG motivation for BH-Remnants M.
Maziashvili Phys. Lett. B635 (2006) 232 R.
Adler, P. Chen, D Santiago, Gen. Rel. Grav. 33
(2001) 2101-2108 BH-Remnants in
Einstein-Gauss-Bonnet string gravity S.
Alexejev et al, Class.Quant.Grav. 19 (2002)
4431 BH-Remnants from Stringy corr.
Einst.-Hilbert action, Lovelock higher-order
curvature T. Rizzo, JHEP 0506 (2005) AdS/CFT
and BH-Remnantss R. Casadio, hep-ph/0304099
motivates evaporation rate
Stable Black Hole -Remnants BHR ?
27Black Hole Remnants from Large Extra
Dimensions?Sabine Hossenfelder, M. Bleicher, S.
Hofmann, Horst Stöcker, Ashutosh Kotwal
Phys.Lett.B566(2003)233
BHR
28BH-Remnants large increase of Jets at medium pT
100 GeV while high pt Jets are quenched
BH-restmass!
Large Increase
Quench
Koch, Hossenfelder, Bleicher JHEP 10 (2005) 053
29Numerical Simulation
Koch, Hossenfelder, Bleicher JHEP 10 (2005)
053
See also Hossenfelder, Bleicher, Hofmann,
Stoecker, Ashutosh, Kotwal Phys. Lett. B566,
233-239 (2003) T. Humanic, B.Koch, H.Stoecker,
IJMPE, accepted for publication
BHR
30Recoil BH-Remnant in ATLAS _at_ LHC
31Conclusions
- Large Extra dimensions LXD provide an alternative
to SUSY in addressing the hierarchy problem - If LXD realized in nature, gravity may be
stronger than we think - In that case, actual Planck scale may be within
reach of the LHC - Black hole production could be abundant, and we
could see something early on at LHC... namely - gt WHITE holes!
- Black? white hole production would dominate
high pt at LHC... - The end of short distance physics
- BH production would provide an unexpected window
into geometry of spacetime, as well as a new
production process for other undiscovered
particles
32Thank You !
Marcus Bleicher ITP, Goethe- Univ.
Frankfurt Uli Harbach FIAS Ben
Koch FIAS Stefan Scherer
FIAS Tom Humanic Ohio State
Univ. Stefan Hofmann now Perimeter
Institute, Waterloo Sabine Hossenfelder now UC
Santa Barbara Kerstin Paech now
NSCL, MSU, East Lansing
33T1 TeV Kapusta-Hawking-Plasma
- Extreme Hawking energy density in pp!
- Multiple hard Jets with hundreds of GeV each!
- Heavy Quark Jets in Kapusta-Hawking Plasma?
- Thermalization? VISCOSITY!
- Formation of HOT plasma?
- T gt 100 GeV 1000 Tcrit-QCD, TgtTelectroweak
P.T. - Hydrodynamic Detonation? Viscous Blast Wave?
- -gt Soft, Thermal emission rates of
- Strange, Charm, Bottom, Truth abundant!
- Electroweak-, Higgs- and SUSY particles!
34Focus 32/1999
35Where Does the Energy Go?
dev
Mach cone from sonic boom? H. Stoecker J.
Casalderrey-Solana E. Shuryak Color wakes? J.
Ruppert B. Müller Cherenkov-like gluon
radiation? I. Dremin A. Majumder, X.-N. Wang
Azimuthal Angular Correlations
Lost energy of away-side jet is redistributed to
rather large angles!
3650 GeV Mono-Jet ALICE_at_LHC b3fm 1. Ord. PT-QGP
Paech Dumitru
37Back-to-Back Correlated Di-Jets How much of Jet
quenching is due to (pre-) hadronic FSI ?
HSD
38(No Transcript)
39(No Transcript)
40(No Transcript)
41- Many studies underway within ATLAS
- Black holes Extra- dimension studies by
ATLAS-collab. atlas.web.cern.ch/Atlas/GROUPS/PHYSI
CS/EXOTICS - ATLAS studies on Black Holes written up
- Harris, C M Palmer, M J Parker, M A
Richardson, P Sabetfakhri, A Webber, B
RExploring Higher Dimensional Black Holes at the
Large Hadron Collider ATL-PHYS-2004-033 - Tanaka, J Yamamura, T Asai, S Kanzaki, J
Study of Black Holes with the ATLAS detector at
the LHC -- ATL-PHYS-2003-037 - J. Grain, Search for Gauss-Bonnet Black Holes,
EPJA
42ATLAS - Proposal
Graviton- emission in d- Dim LXD
-gt missing yield of high pT away-side Jets
Sub-processes _at_ LHC
G Jet q q -gt g G q g -gt q G g g -gt g G
detect Jet Missing ET
G Gamma q q -gt Gamma G
Gamma Missing ET
Energy Momentum are not conserved on our
3-brane.
ATLAS will search for this L.Vacavant, et al.,
J.Phys.G
43(No Transcript)
44(No Transcript)
45(No Transcript)
46(No Transcript)
47(No Transcript)
48Black Holes constitute the center of all
galaxies? Di-Jets, Quasars
49(No Transcript)
50Shockwave in TPC? (ALICE)
51Stable remnants convert mass into energy Emc2
- 90 efficiency (neutrinos, gravitons escape)
- Remnant BHs Convert protons in photons, e/-
- Yearly world energy consumption 1021 Joule
- m E/c2 1021 J/(3108 m/s)2
- 104 kg 10 tons
- Need 10 tons of abitrary material, convert to
radiation
52Di-Jet Suppression and Multi-Mono-Jet Emission
Signal of QGP or LXD- Black Holes at LHC
Horst Stöcker, FIAS Frankfurt Institute for
Advanced Studies
1 LXD TeV-BHs in pp _at_ LHC - 108 p.a. ?! 2 Di-
Jet suppression- Signal LXD-BHs _at_ LHC ALICE,
ATLAS, CMS 3 Muliple Monojets from
Hawking-Evaporating signal TeV-BHs! Need
EM-Cal for better 100 GeV reach in pt 4
Stable TeV-Remnant-BHs? Observe them in TPC? 5
BH- Production 1000enhanced in PbPb _at_ 5.5
ATeV 6 TeV-BHs explode in QCD-plasma?
53(No Transcript)
54Genfer Mini- Monster
55Black Holes in 31 Dim Karl Schwarzschild
Born 9 Oct 1873 in Frankfurt am Main 1915
solves Einsteins General Relativity, Predicts
Black Holes Schwarzschild- Metric Schwarzschild-
Radius RS Horizon-Radius RH Schwarzschild-Si
ngularity R -gt 0
56Black Holes in D 4d
LXD in macrocosmos
Topology of the horizon
Topology of the horizon
57Hard Scattering NO Di-Jets, but BHs !
STAR p p ? jet event
See Multi-Mono-Jets in LHC energy pp AuAu ?
58(No Transcript)
59(No Transcript)
603. Thermalization of Multiple Mono-Jets?
Kapusta-Hawking- Plasma in pp_at_LHC!
61Hawking Evaporation of BHs in D 31 4
Evaporation rate
Sun
Lifetime
LHC
62Black Hole Evolution
- Na?vely, black holes would only grow once they
are formed - In 1975 Steven Hawking showed that this is not
true, as the black hole can evaporate by emitting
pairs of virtual photons at the event horizon,
with one of the pair escaping the BH gravity - These photons have a black-body spectrum (Planck)
with the Hawking temperature - The smallest black holes are the hottest!
- Usual Stefan-Boltzmann blackbody formula givess
the Luminosity LTH4 - The smallest are also the brightest!
- If the Hawkings Temperature is high enough, then
particle/ antiparticle pairs (other than two
photons) are created as well, and the black hole
luminosity increases. - Total luminosity directly proportionally to the
degrees of freedom available.
63HAWKING
BUT LXD-BHs
64Large Extra Dimensions LXD d 1, 2,, 6, 7?
SUSY317 Dim
Our world embedded into d compactified LXD
RgtgtlPl
Boundary Conditions in compactified d- Dim
Donli et al., PLB 429 (1998) 263