Title: A Primer on Design Matrices
1A Primer on Design Matrices
http//bear.soe.berkeley.edu/kennedyc/primer.pdf
2Dichotomous item
3Dichotomous item
4Dichotomous item
q1
q coefficients become the Scoring Matrix.
5Dichotomous item
di
d coefficients become the Design Matrix.
63-category partial credit item
73-category partial credit item
8Focus on the Numerators
P(x0) exp(0q (0di1 0di2))) P(x1) exp(1q
(1di1 0di2)) P(x2) exp(2q (1di1
1di2))
9Focus on the Numerators
P(x0) exp(0q (0di1 0di2))) P(x1) exp(1q
(1di1 0di2)) P(x2) exp(2q (1di1
1di2))
q1
q coefficients become the Scoring Matrix.
10Focus on the Numerators
P(x0) exp(0q (0di1 0di2))) P(x1) exp(1q
(1di1 0di2)) P(x2) exp(2q (1di1
1di2))
di1
di2
d coefficients become the Design Matrix.
11Another partial credit parameterization
Let di average of all dijs and tij deviation
from di at dij. Then, dij di tij.
P(x0) exp(0q (0di0ti1 0di0ti2)) P(x1)
exp(1q (1di1ti1 0di0ti2)) P(x2) exp(2q
(1di1ti1 1di1ti2))
12Rating scale is a special case of partial credit
parameterization
The deviations, t, are the same for a given step
across all items (t11 t21 t31 and t12 t22
t32 etc.).
P(x0) exp(0q (0di0t1 0di0t2)) P(x1) ex
p(1q (1di1t1 0di0t2)) P(x2) exp(2q
(1di1t1 1di1t2))
13Rating scale is a special case of partial credit
parameterization
Combine common terms
P(x0) exp(0q (0di 0t1 0t2)) P(x1) exp(1
q (1di 1t1 0t2)) P(x2) exp(2q (2di
1t1 1t2))
14Rating scale is a special case of partial credit
parameterization
Combine common terms
P(x0) exp(0q (0di 0t1 0t2)) P(x1) exp(1
q (1di 1t1 0t2)) P(x2) exp(2q (2di
1t1 1t2))
q1
q coefficients become the Scoring Matrix.
15Rating scale is a special case of partial credit
parameterization
Combine common terms
P(x0) exp(0q (0di 0t1 0t2)) P(x1) exp(1
q (1di 1t1 0t2)) P(x2) exp(2q (2di
1t1 1t2))
di
t1
t2
d coefficients become the Design Matrix.
16Multiple Items
A
B
17Multiple Dimensions- Between Item
Item 1 Item 2 Item 3
q1 q2
18Multiple Dimensions- Between Item
Assessment Scoring Matrix q1
q2 item 1, category 1 0 0 item 1, category
2 1 0 item 1, category 3 2 0 item 2, category
1 0 0 item 2, category 2 0 1 item 2, category
3 0 2 item 3, category 1 0 0 item 3, category
2 1 0 item 3, category 3 2 0 item 3, category
4 3 0
19Multiple Dimensions- Between Item
Assessment Design Matrix d11 d12 d21
d22 d31 d32 d33 item 1, category 1 0 0
0 0 0 0 0 item 1, category 2 1 0 0 0 0
0 0 item 1, category 3 1 1 0 0 0 0
0 item 2, category 1 0 0 0 0 0 0 0 item 2,
category 2 0 0 1 0 0 0 0 item 2, category
3 0 0 1 1 0 0 0 item 3, category 1 0 0 0
0 0 0 0 item 3, category 2 0 0 0 0 1 0
0 item 3, category 3 0 0 0 0 1 1 0 item 3,
category 4 0 0 0 0 1 1 1
20Multiple Dimensions- Within Item
q1 q2
Item 1
21Multiple Dimensions- Within Item
Item Scoring Matrix q1 q2 category 1
(1,1) 0 0 category 2 (1,2) 0 1 category 3
(1,3) 0 2 category 4 (2,1) 1 0 category 5
(2,2) 1 1 category 6 (2,3) 1 2 category
12 (4,3) 3 2
22Multiple Dimensions- Within Item
Item Design Matrix dq1,1 dq1,2 dq1,3
dq2,1 dq2,2 (ddimension,step) category 1
(1,1) 0 0 0 0 0 category 2 (1,2) 0
0 0 1 0 category 3 (1,3) 0 0 0
1 1 category 4 (2,1) 1 0 0 0 0
category 5 (2,2) 1 0 0 1
0 category 6 (2,3) 1 0 0 1
1 category 12 (4,3) 1 1 1 1 1