Title: A Primer on Design Matrices
1A Primer on Design Matrices
http//bear.soe.berkeley.edu/kennedyc/primer.pdf
2Dichotomous item
3Dichotomous item
4Dichotomous item
q1
q coefficients become the Scoring Matrix.
5Dichotomous item
di
d coefficients become the Design Matrix.
63-category partial credit item
73-category partial credit item
8Focus on the Numerators
P(x0) exp(0q (0di1 0di2))) Â P(x1) exp(1q
(1di1 0di2)) Â P(x2) exp(2q (1di1
1di2))
9Focus on the Numerators
P(x0) exp(0q (0di1 0di2))) Â P(x1) exp(1q
(1di1 0di2)) Â P(x2) exp(2q (1di1
1di2))
q1
q coefficients become the Scoring Matrix.
10Focus on the Numerators
P(x0) exp(0q (0di1 0di2))) Â P(x1) exp(1q
(1di1 0di2)) Â P(x2) exp(2q (1di1
1di2))
di1
di2
d coefficients become the Design Matrix.
11Another partial credit parameterization
Let di average of all dijs and tij deviation
from di at dij. Then, dij di tij.
P(x0) exp(0q (0di0ti1 0di0ti2)) Â P(x1)
exp(1q (1di1ti1 0di0ti2)) Â P(x2) exp(2q
(1di1ti1 1di1ti2))
12Rating scale is a special case of partial credit
parameterization
The deviations, t, are the same for a given step
across all items (t11 t21 t31 and t12 t22
t32 etc.).
P(x0) exp(0q (0di0t1 0di0t2)) Â P(x1) ex
p(1q (1di1t1 0di0t2)) Â P(x2) exp(2q
(1di1t1 1di1t2))
13Rating scale is a special case of partial credit
parameterization
Combine common terms
P(x0) exp(0q (0di 0t1 0t2)) Â P(x1) exp(1
q (1di 1t1 0t2)) Â P(x2) exp(2q (2di
1t1 1t2))
14Rating scale is a special case of partial credit
parameterization
Combine common terms
P(x0) exp(0q (0di 0t1 0t2)) Â P(x1) exp(1
q (1di 1t1 0t2)) Â P(x2) exp(2q (2di
1t1 1t2))
q1
q coefficients become the Scoring Matrix.
15Rating scale is a special case of partial credit
parameterization
Combine common terms
P(x0) exp(0q (0di 0t1 0t2)) Â P(x1) exp(1
q (1di 1t1 0t2)) Â P(x2) exp(2q (2di
1t1 1t2))
di
t1
t2
d coefficients become the Design Matrix.
16Multiple Items
A
B
17Multiple Dimensions- Between Item
Item 1 Item 2 Item 3
q1 q2
18Multiple Dimensions- Between Item
Assessment Scoring Matrix q1
q2 item 1, category 1 0 0 item 1, category
2 1 0 item 1, category 3 2 0 item 2, category
1 0 0 item 2, category 2 0 1 item 2, category
3 0 2 item 3, category 1 0 0 item 3, category
2 1 0 item 3, category 3 2 0 item 3, category
4 3 0 Â
19Multiple Dimensions- Between Item
Assessment Design Matrix d11 d12 d21
d22 d31 d32 d33 item 1, category 1 0 0
0 0 0 0 0 item 1, category 2 1 0 0 0 0
0 0 item 1, category 3 1 1 0 0 0 0
0 item 2, category 1 0 0 0 0 0 0 0 item 2,
category 2 0 0 1 0 0 0 0 item 2, category
3 0 0 1 1 0 0 0 item 3, category 1 0 0 0
0 0 0 0 item 3, category 2 0 0 0 0 1 0
0 item 3, category 3 0 0 0 0 1 1 0 item 3,
category 4 0 0 0 0 1 1 1 Â Â
20Multiple Dimensions- Within Item
q1 q2
Item 1
21Multiple Dimensions- Within Item
Item Scoring Matrix q1 q2 category 1
(1,1) 0 0 category 2 (1,2) 0 1 category 3
(1,3) 0 2 category 4 (2,1) 1 0 category 5
(2,2) 1 1 category 6 (2,3) 1 2 category
12 (4,3) 3 2
22Multiple Dimensions- Within Item
Item Design Matrix dq1,1 dq1,2 dq1,3
dq2,1 dq2,2 (ddimension,step) category 1
(1,1) 0 0 0 0 0 category 2 (1,2) 0
0 0 1 0 category 3 (1,3) 0 0 0
1 1 category 4 (2,1) 1 0 0 0 0
category 5 (2,2) 1 0 0 1
0 category 6 (2,3) 1 0 0 1
1 category 12 (4,3) 1 1 1 1 1 Â