Title: Nova Stuff
1Macromolecular Science and Engineering
Wednesday June 2 MA3 Regatta Advances In
Olefin Polymerization Organizer - H. Zahalka
Chair - J. Soares
1400-1430 00995 A Density Functional Study on
Ion-Pair Formation in Group 4 Metallocene and
Related Olefin Polymerization Catalysts Ziegler
T., Chan M., Vanka K., Pye C.
2A Density Functional Study on Activation and
Ion-Pair Formation in Group IV Metallocene and
Related Olefin Polymerization Catalysts
- Mary S.W. Chan, Kumar Vanka,
- Cory C. Pye and Tom Ziegler
- Department of Chemistry, University of Calgary
- Calgary, Alberta Canada T2N 1N4
3(No Transcript)
4(No Transcript)
5Major Sections
Areas for In-depth Study
- Activation of various catalyst precursors by
the co-catalyst B(C6F5)3
- Reactions of the contact ion-pair
Catalyst Systems for In-depth Study
M Ti or Zr R methyl group
Mono- cyclopentadienyl
Bis- cyclopentadienyl
Constrained Geometry
6Activation by a Co-catalyst
Enthalpy Change of Methide Abstraction
?H M Ti -12.2 kcal/mol
M Zr -14.9 kcal/mol
?H M Ti -14.4 kcal/mol
M Zr -17.5 kcal/mol
?H M Ti -16.3 kcal/mol
M Zr -19.1 kcal/mol
7Activation by a Co-catalyst
Charge Analysis of Ligands and Functional Groups
in the Neutral Precursor and Ion-Pair
Cyclopenta dienyl 0.02 Ti 0.41 methyl -0.15 meth
yl -0.15 methyl -0.13
Cyclopenta dienyl 0.13 Ti 0.43 methyl -0.07 Meth
yl -0.07 m-methyl -0.03 B -0.01 C6F5 -0.09 C6F5 -0
.13 C6F5 -0.15
B 0.11 C6F5 -0.04 C6F5 -0.03 C6F5 -0.04
8Activation by a Co-catalyst
Effect of Alkyl Substitution on the Constrained
Geometry Catalyst
?H ?H Total Total Change in R
gas phase COSMO Charge in Charge
in Charge (kcal/mol) (kcal/mol) Neutral Ion-Pair
Density
H -13.9 -14.4 -0.21 -0.17 0.04 Methyl -16.1 -16.4
-0.19 -0.13 0.06 Isopropyl -16.9 -17.0 -0.18 -0.12
0.06 tert-Butyl -18.4 -18.0 -0.19 -0.10 0.09
9Activation by a Co-catalyst
Effect of Methyl Substitution on Cp Rings
?H (kcal/mol) ?H (kcal/mol) Substitution on
Cp gas phase COSMO Experimentala
H -19.1 -19.1 -23.1 1,2-Dimethyl -23.8 -24.0 -24.
3 Pentamethyl -27.5 -27.8 -36.7
aObtained from Deck, P.A. Beswick, C.L.
Marks, T.J. J. Chem. Soc. 1998, 120, 1772.
10(No Transcript)
11(No Transcript)
12(No Transcript)
13(No Transcript)
14(No Transcript)
15(No Transcript)
16(No Transcript)
17(No Transcript)
18(No Transcript)
19(No Transcript)
20(No Transcript)
21(No Transcript)
22(No Transcript)
23(No Transcript)
24(No Transcript)
25(No Transcript)
26(No Transcript)
27(No Transcript)
28(No Transcript)
29Introduction
Possible Reactions of the Contact Ion-Pair
30Reactions of the Contact Ion-Pair
Toluene Complexed Ions and Ion-Pairs from the
CpZrMe3 Precursor
31Reactions of the Contact Ion-Pair
Toluene Complexed Ions and Ion-Pairs from the
H2SiCp(NH)ZrMe2 Precursor
32Reactions of the Contact Ion-Pair
Toluene Complexed Ions and Ion-Pairs from the
Cp2ZrMe2 Precursor
33Reactions of the Contact Ion-Pair
Olefin Complexed Ions and Ion-Pairs from the
CpZrMe3 Precursor
34Reactions of the Contact Ion-Pair
Olefin Complexed Ions and Ion-Pairs from the
H2SiCp(NH)ZrMe2 Precursor
35Reactions of the Contact Ion-Pair
Olefin Complexed Ions and Ion-Pairs from the
Cp2ZrMe2 Precursor
36Reactions of the Contact Ion-Pair
Initial Stages of Polymerization for CpMMe3 and
H2SiCp(NH)MMe2 Systems
37Reactions of the Contact Ion-Pair
Initial Stages of Polymerization for Cp2MMe2
Systems
38Conclusions
- Electronic factors play a predominant role in
determining the enthalpy change of methide
abstraction to form a contact ion-pair. - Mechanism of olefin complexation dependant on the
structure of the catalyst precursor and solvent. - Mono-cyclopentadienyl and constrained geometry
catalysts show a strong tendency to co-ordinate
with toluene - The steric bulk of the bis-cyclopentadienyl
catalysts prevent optimal co-ordination with
toluene and makes olefin complexation more
favorable
39Work in Progress
- Search for the structure of resting state(s)
incorporating the counter ion
- Molecular dynamics simulation of olefin uptake
and insertion - from the contact ion-pair
40Future Work
- To study the influence of the counter ion on the
propagation steps of the polymerization process - To study the influence of the counter ion on
chain termination steps of the polymerization
process - To study the role of the counter ion with other
catalysts precursors such as the Brookhart or the
McConville systems - To study the influence of other solvents
(non-aromatic) on ion-pair formation and
dissociation - To design new precatalysts and co-catalysts
systems
41(No Transcript)
42(No Transcript)
43(No Transcript)
44(No Transcript)