Nova Stuff - PowerPoint PPT Presentation

1 / 44
About This Presentation
Title:

Nova Stuff

Description:

Metallocene and Related Olefin Polymerization Catalysts. Ziegler T., Chan M., Vanka K., Pye C. ... H M = Ti -16.3 kcal/mol M = Zr -19.1 kcal/mol. Activation by ... – PowerPoint PPT presentation

Number of Views:181
Avg rating:3.0/5.0
Slides: 45
Provided by: dft1
Category:
Tags: nova | stuff

less

Transcript and Presenter's Notes

Title: Nova Stuff


1
Macromolecular Science and Engineering
Wednesday June 2 MA3 Regatta Advances In
Olefin Polymerization Organizer - H. Zahalka
Chair - J. Soares
1400-1430 00995 A Density Functional Study on
Ion-Pair Formation in Group 4 Metallocene and
Related Olefin Polymerization Catalysts Ziegler
T., Chan M., Vanka K., Pye C.
2
A Density Functional Study on Activation and
Ion-Pair Formation in Group IV Metallocene and
Related Olefin Polymerization Catalysts
  • Mary S.W. Chan, Kumar Vanka,
  • Cory C. Pye and Tom Ziegler
  • Department of Chemistry, University of Calgary
  • Calgary, Alberta Canada T2N 1N4

3
(No Transcript)
4
(No Transcript)
5
Major Sections
Areas for In-depth Study
  • Activation of various catalyst precursors by
    the co-catalyst B(C6F5)3
  • Reactions of the contact ion-pair

Catalyst Systems for In-depth Study
M Ti or Zr R methyl group
Mono- cyclopentadienyl
Bis- cyclopentadienyl
Constrained Geometry
6
Activation by a Co-catalyst
Enthalpy Change of Methide Abstraction
?H M Ti -12.2 kcal/mol
M Zr -14.9 kcal/mol
?H M Ti -14.4 kcal/mol
M Zr -17.5 kcal/mol
?H M Ti -16.3 kcal/mol
M Zr -19.1 kcal/mol
7
Activation by a Co-catalyst
Charge Analysis of Ligands and Functional Groups
in the Neutral Precursor and Ion-Pair

Cyclopenta dienyl 0.02 Ti 0.41 methyl -0.15 meth
yl -0.15 methyl -0.13
Cyclopenta dienyl 0.13 Ti 0.43 methyl -0.07 Meth
yl -0.07 m-methyl -0.03 B -0.01 C6F5 -0.09 C6F5 -0
.13 C6F5 -0.15
B 0.11 C6F5 -0.04 C6F5 -0.03 C6F5 -0.04
8
Activation by a Co-catalyst
Effect of Alkyl Substitution on the Constrained
Geometry Catalyst
?H ?H Total Total Change in R
gas phase COSMO Charge in Charge
in Charge (kcal/mol) (kcal/mol) Neutral Ion-Pair
Density
H -13.9 -14.4 -0.21 -0.17 0.04 Methyl -16.1 -16.4
-0.19 -0.13 0.06 Isopropyl -16.9 -17.0 -0.18 -0.12
0.06 tert-Butyl -18.4 -18.0 -0.19 -0.10 0.09
9
Activation by a Co-catalyst
Effect of Methyl Substitution on Cp Rings
?H (kcal/mol) ?H (kcal/mol) Substitution on
Cp gas phase COSMO Experimentala
H -19.1 -19.1 -23.1 1,2-Dimethyl -23.8 -24.0 -24.
3 Pentamethyl -27.5 -27.8 -36.7
aObtained from Deck, P.A. Beswick, C.L.
Marks, T.J. J. Chem. Soc. 1998, 120, 1772.
10
(No Transcript)
11
(No Transcript)
12
(No Transcript)
13
(No Transcript)
14
(No Transcript)
15
(No Transcript)
16
(No Transcript)
17
(No Transcript)
18
(No Transcript)
19
(No Transcript)
20
(No Transcript)
21
(No Transcript)
22
(No Transcript)
23
(No Transcript)
24
(No Transcript)
25
(No Transcript)
26
(No Transcript)
27
(No Transcript)
28
(No Transcript)
29
Introduction
Possible Reactions of the Contact Ion-Pair
30
Reactions of the Contact Ion-Pair
Toluene Complexed Ions and Ion-Pairs from the
CpZrMe3 Precursor
31
Reactions of the Contact Ion-Pair
Toluene Complexed Ions and Ion-Pairs from the
H2SiCp(NH)ZrMe2 Precursor
32
Reactions of the Contact Ion-Pair
Toluene Complexed Ions and Ion-Pairs from the
Cp2ZrMe2 Precursor
33
Reactions of the Contact Ion-Pair
Olefin Complexed Ions and Ion-Pairs from the
CpZrMe3 Precursor
34
Reactions of the Contact Ion-Pair
Olefin Complexed Ions and Ion-Pairs from the
H2SiCp(NH)ZrMe2 Precursor
35
Reactions of the Contact Ion-Pair
Olefin Complexed Ions and Ion-Pairs from the
Cp2ZrMe2 Precursor
36
Reactions of the Contact Ion-Pair
Initial Stages of Polymerization for CpMMe3 and
H2SiCp(NH)MMe2 Systems
37
Reactions of the Contact Ion-Pair
Initial Stages of Polymerization for Cp2MMe2
Systems
38
Conclusions
  • Electronic factors play a predominant role in
    determining the enthalpy change of methide
    abstraction to form a contact ion-pair.
  • Mechanism of olefin complexation dependant on the
    structure of the catalyst precursor and solvent.
  • Mono-cyclopentadienyl and constrained geometry
    catalysts show a strong tendency to co-ordinate
    with toluene
  • The steric bulk of the bis-cyclopentadienyl
    catalysts prevent optimal co-ordination with
    toluene and makes olefin complexation more
    favorable

39
Work in Progress
  • Search for the structure of resting state(s)
    incorporating the counter ion
  • Molecular dynamics simulation of olefin uptake
    and insertion
  • from the contact ion-pair

40
Future Work
  • To study the influence of the counter ion on the
    propagation steps of the polymerization process
  • To study the influence of the counter ion on
    chain termination steps of the polymerization
    process
  • To study the role of the counter ion with other
    catalysts precursors such as the Brookhart or the
    McConville systems
  • To study the influence of other solvents
    (non-aromatic) on ion-pair formation and
    dissociation
  • To design new precatalysts and co-catalysts
    systems

41
(No Transcript)
42
(No Transcript)
43
(No Transcript)
44
(No Transcript)
Write a Comment
User Comments (0)
About PowerShow.com