The Vital Chain: Steps in Oxygen Delivery - PowerPoint PPT Presentation

1 / 36
About This Presentation
Title:

The Vital Chain: Steps in Oxygen Delivery

Description:

The Vital Chain: Steps in Oxygen Delivery – PowerPoint PPT presentation

Number of Views:93
Avg rating:3.0/5.0
Slides: 37
Provided by: Tuf83
Category:
Tags: chain | delivery | hi5 | in | oxygen | steps | vital | who

less

Transcript and Presenter's Notes

Title: The Vital Chain: Steps in Oxygen Delivery


1
The Vital ChainSteps in Oxygen Delivery
  • Nicholas S. Hill MD
  • Tufts Medical Center
  • Boston, MA

2
Disclosures
  • None Relevant

3
Oxygen Essential to Aerobic Metabolism
  • Lungs evolved to provide large, air conditioned,
    thin surface area (size of tennis court) to bring
    oxygen in contact with blood (and CO2 in blood
    with air)
  • Cardiovascular system transports oxygen to
    tissues where capillary bed, once again, provides
    large surface area for diffusion so cells can be
    oxygenated
  • Hemoglobin greatly enhances carrying capacity of
    blood for oxygen

4
Steps in Oxygen Delivery
1 PIO2
2 Ventilation
4 Circulation
5 Tissue Delivery
3 Gas Txfer
5
First Step Ambient Air
  • Inspired PO2 Barometric pressure (760 mm Hg)
    Water vapor pressure (47 mm hg) X Fraction of
    inspired O2 (.21)
  • At sea level, PIO2 150 mm Hg
  • Rule of 7s Multiply FIO2 X 7 PIO2
  • PIO2 is low if 1) PB is low (altitude) or
  • 2) FIO2 is low
  • Adaptations 1) Descend climb high, sleep low
    2) Increase FIO2

6
Second Step Ventilation
  • Oxygen enters alveolus with ambient air
  • (which is 79 nitrogen)
  • Steady concentration of O2 maintained by flushing
    CO2 at rate sufficient to match body metabolism
  • PaCO2 VO2 (CO2 production)/
  • VA (alveolar ventilation)
  • VA VE (minute ventilation) minus VD (dead space
    ventilation)

.
7
Ventilation
Alveolar Air Equation PAO2 PIO2 1.25 X
PaCO2
ALVEOLUS
For Normal at Sea Level PAO2 150 1.25 X 40
100
f
PAO2 100 PACO2 40 mm Hg mm
Hg
CAPILLARY
PaO2 80-90, PaCO2 40
8
Hypoventilation causes Hypoxia
Alveolar Air Equation PAO2 PIO2 1.25 X
PaCO2
ALVEOLUS
Hypoventilation ? PaCO2 PAO2 150 1.25 X
64 70
f
PAO2 70 PACO2 64 mm Hg mm
Hg
Adaptation 1) ? ventilation 2) ? FIO2
CAPILLARY
PaO2 50-60, PaCO2 40
9
Step 3 Gas Transfer
Gas Flow
O2
Alveoli
O2
10
Step 3 Gas Transfer
SHUNT
Gas Flow
Little Response to O2 supplement
O2
Alveoli
O2
11
Step 3 Gas Transfer
V/Q Mismatch
Responds to O2 supplement
Gas Flow
O2
O2
Alveoli
Hypoxic Vasoconstriction
12
Step 3 Gas Transfer
V/Q Mismatch
Responds to O2 supplement
Gas Flow
O2
O2
Alveoli
13
Step 3 Gas Transfer
Diffusion Abnormality
Depends on PAO2, Blood Velocity, Responds to O2
Supplement
Gas Flow
Alveoli
14
Step 3 Gas Transfer
No direct Effect on PO2
Gas Flow
Dead Space
O2
Alveoli
O2
15
Step 4 Circulation
  • Cardiac Output Heart Rate X Stroke Volume nl
    5-6 L/min
  • Oxygen Delivery CO X Arterial O2 Content
  • Oxygen Consumption Arteriovenous O2 content
    difference X cardiac output

16
Step 4 Circulation
  • O2 content O2 sat X 1.34 ml/gm hgb X gm hgb
    0.03 ml O2/ ml blood
  • Diminished O2 Delivery Low CO or Anemia
  • Adaptations 1) ? AV difference
  • 2) ? CO
  • 3) ? Hgb

17
Step 5 Tissue Delivery
  • Ability to deliver O2
  • O2 Delivery
  • Capillary O2 tension (Nl O2 sat 75)
  • Density of capillaries
  • Mitochondrial density
  • Adaptations 1) ? O2 delivery, 2,3 DPG
  • 2) ? Capillarity
  • 3) ? Mitochondrial
    density

18
Stresses on O2 Pathway
  • Exercise
  • Respiratory Failure
  • Cardiovascular Failure
  • Severe Anemia
  • Altitude
  • Exercise at Altitude

19
Brief History of Everest Climbs
  • 8848 m at summit Head of the Sky
  • Sir Edmond Hillary and Sherpa Tenzing Norgay
    first to climb in 1953
  • Messner and Habeler first to climb without oxygen
    in 1978
  • 2400 individuals have summitted, 210 have died

20
Everest The Ultimate Stressor
21
Ascent Operation Everest I
22
Operation Everest I
  • Ascent of Everest in 1981 by American Medical
    Research Expedition
  • 6 mountaineers, 6 climbing scientists, 8
    physiologists
  • Labs at 17, 23 and 26,000 ft
  • Alveolar gas samples from the summit PB 253
    mm Hg, PIO2 43 mm Hg, PAO2 35 mm Hg, pH
    calculated 7.7
  • PaO2 28, PaCO2 7.5 mm Hg

23
Lab on Western Cwm 6300m
24
The South Col
25
Operation Everest II
  • Simulated Ascent of Everest in 1985 by 8 healthy
    young male volunteers in decompression tank at
    Natick Army Labs
  • Tested at rest and exercise with right heart
    catheters A-lines at sea level, 18,000 ft,
    simulated summit
  • Two subjects withdrawn for syncope, confusion.
    Complete data on 5.

Sutton JR et al, J Appl Physiol 1988 641309
26
(No Transcript)
27
Step 1 Ambient Air
  • Simulated Summit of Everest
  • PIO2 PB (240 mm Hg) 47 mm Hg X 0.22 43 mm
    Hg
  • Major challenge, especially with exercise
  • How to Adapt?

28
Step 2 Ventilation OE II
PIO2 (mm Hg)
  • SL 63 43
  • Rest VE l/min 11 21 38
  • PaCO2 34 20 11
  • PaO2 99 41 30
  • O2 uptake 0.35 0.31 0.41
  • Exer VE l/min 48 94 185
  • (120 watts)PaCO2 38 18 9.6
  • PaO2 100 34 28
  • O2 uptake 1.8 1.5 1.2

Sutton JR et al, J Appl Physiol 1988 641309
29
Key Adaptation Hyperventilation
Sutton JR et al, J Appl Physiol 1988 641309
30
Hyperventilation minimizes Hypoxia at Summit of
Everest
Alveolar Air Equation PAO2 PIO2 1.25 X
PaCO2
ALVEOLUS
Hypoventilation ? PaCO2 PAO2 43 1.25 X
9.6 31
f
PAO2 31 PACO2 9.6 mm Hg mm
Hg
Adaptation 1) ? ventilation 2) ? FIO2
CAPILLARY
PaO2 27, PaCO2 9.6
31
Step 3 Gas Transfer
  • Minimal shunt, V/Q
  • Diffusion abnormality related to blood velocity,
    but mild
  • Mild Pulmonary hypertension due to sustained
    pulmonary hypoxia with remodeling (mPAP 25, PVR
    350 dsc) at PB 282 mm Hg

32
Step 4 Cardiovascular
PIO2
  • SL 63 43
  • Rest CO l/min 6.3 5.0 7.3
  • SaO2 98 75 58
  • PvO2 35 28 27
  • Exer CO l/min 16.1 15 16.5
  • SaO2 98 64 51
  • PvO2 26 15 14
  • Lactate 7.8 4.7 3.4

Sutton JR et al, J Appl Physiol 1988 641309
33
Step 4 Cardiovascular/hematological adaptations
PIO2
  • SL 63 43
  • Rest Weight kg 78 75 75
  • Hgb gm 13.5 16 17
  • 2,3 DPG 1.7 3.0 3.8
  • pH (rest) 7.43 7.53 7.57

Sutton JR et al, J Appl Physiol 1988 641309
34
Step 5 Tissue Delivery
  • Adaptatons
  • Increased capillarity
  • Increased mitochondrial density

35
Steps in Oxygen Delivery
1 PIO2 (43)
2 (31) Ventilation
4 (27) Circulation
5 (14) Tissue Delivery
3 Gas Txfer
36
Summary
  • Oxygen delivery is a vital chain of steps that
    bring O2 to tissues
  • These consist of ventilation, gas transfer,
    circulation and tissue delivery
  • Disruptions of steps cause hypoxemia, but
    adaptations occur at each step to minimize the O2
    decrease
  • The summit of Everest tests the limits human
    adaptation and endurance
Write a Comment
User Comments (0)
About PowerShow.com