Information theory - PowerPoint PPT Presentation

1 / 21
About This Presentation
Title:

Information theory

Description:

... user information theory. Part 3: Slepian Wolf Source Coding. A.J. Han Vinck ... Probability( all different colors in M drawings ) = = N(N-1)(N-2) (N-M 1)/NM ... – PowerPoint PPT presentation

Number of Views:55
Avg rating:3.0/5.0
Slides: 22
Provided by: expmathU
Category:

less

Transcript and Presenter's Notes

Title: Information theory


1
Information theory
  • Multi-user information theory
  • Part 3 Slepian Wolf Source Coding
  • A.J. Han Vinck
  • Essen, 2002

2
content
  • Source coding for dependent sources that are
    separated

3
Goal of the lecture
  • Explain the idea of
  • independent source coding for dependent source

4
Problem explanation
X (X,Y) decoder Y
Independent encoding of X we use nH(X)
bits Independent encoding of Y we use nH(Y)
bits Total nH(X) H(Y) ? nH(X,Y)
nH(X)H(YX)
5
(No Transcript)
6
(No Transcript)
7
(No Transcript)
8
(No Transcript)
9
realization
X
X
H(X)
De-compress
compress
XHT
YHT
NHT
Syndrome former
De code
N
Y
n-k ? nh(p)
Y X ? N
Total rate H(X) H(YX) H(X) n h(p)
10
(No Transcript)
11
(No Transcript)
12
(No Transcript)
13
Can we do with less?
Generate 2nH(X) typical X sequences decoder
needs only nH(X) bits to determine X Generate
2nH(Y) typical Y sequences how does Y
operate?
14
intermezzo
for N 2nH(YX)? different colors we do
M 2nH(YX) random selections Then
Probability( all different colors in M drawings )
N(N-1)(N-2)???(N-M1)/NM 1 for M/N ? 0
N large
15
Coding for Y
Y generates 2nH(Y) typical sequences every
sequence get one of 2nH(YX)? colors The
decoder knows everything about X, Y and the
coloring
16
decoding
  • decode X from nH(X) received bits
  • Find the possible 2nH(YX) typical Y sequences
    for the particular X
  • 3) Use the color to find Y from the nH(YX)?
    bits

17
Result
Sum rate nH(X) nH(YX)? ? nH(X,Y) for
? small and n large
18
Homework
formalize the proof
19
alternative
  • For linear systematic codes
  • H H1 , H2 H1 , In-k
  • k ? n n h(m/n) (Hamming bound)
  • m of correctable errors

20
General Transmission scheme
  • assume A and B differ in ? m positions
  • A ( a1 , a2 , a3 ) B ( b1 , b2 , b3 )
  • k1 k2 n-k
    k1 k2 n-k
  • Transmitter
  • X ( a1, HA) and Y (b2, HB) ? 2n k bits
  • Receiver
  • S H A ? B ?( e1 , e2 ) ( a1 ? b1 , a2
    ? b2 ) ? a2 , b1
  • a3 H (a1, a2) ? HA b3 H ( b1, b2 ) ? HB

21
Efficiency
  • Entropy H(A) H(BA) n nh(m/n)
  • Transmitted 2n-k n (n-k) ? n nh(m/n)
  • Optimal if we have optimal codes!
Write a Comment
User Comments (0)
About PowerShow.com