Title: Transformations
1Transformations
2Fourier transformation
forward inverse
f(t) cos(2?5t) cos(2? 10t) cos(2?
20t) cos(2? 50t)
3Spectrum, phase
In general F(u) is a complex function F(u)
R(u) j I(u) F(u) ej ?(u) F(u)
? ( R2(u) I2(u) ) the Fourier spectrum of
f(x) ? (u) tan-1 ( I(u) / R(u) ) the phase
angle of f(x)
42 D Fourrier
F(u,v) ? ? f(x,y) e-j2? (uxvy) dx
dyf(x,y) ? ? F(u,v) ej2? (uxvy)du dv
5Convolution
- c(x) f(x) ? g(x) ? f(?)g(x-?) d ?
- C(u) F(u)G(u)
- Point spread function of a lens
- Light on ideal point (?,?) spread over pixels
(x,y) according h(x,?,y,? ) - p(x,y) ? ? w (?,?) h(x,?,y,? ) d ? d ?
- Linear h(x,?,y,? ) h(x-?,y-? )
- p(x,y) ? ? w (?,?) h(x-?,y-? ) d ? d ?
w ? h - P(u,v) W(u,v)H(u,v)
6Discrete Fourier Transformation
In 2-D the DFT becomes Fu,v 1/MN x0?M-1
y0 ? N-1 fx,y e -j2? (xu / M yv /
N)fx,y u0?M-1 v0?N-1 Fu,v
e j2? (xu / M yv / N)
7Fast Fourier Transformation
- To calculate Fu for u0,1...N-1 it takes NN
multiplications and N(N-1) summations of complex
numbers (e... in a table). - The complexity of a DFT is therefore proportional
to N2. - Transform 1 DFT of N terms into 2 DFTs of N/2
terms. - We can apply this recursively and reach a
complexity of N log2N. - special purpose hardware chips wirh parallel
processing
8Use in CT
g ? (x') ? f(x',y') dy' x' x cos ? y
sin ? y' -x sin ? y cos ?
FT( g ? (x')) F(u cos ?, u sin ?).
9Other transformations
- DFT example of whole class of transformations
- T(u) x0 ? N-1 f(x) g(x,u) with g the
forward transformation kernelf(x) u0 ? N-1
T(u) h(x,u) with h the inverse transformation
kernel - Discrete Cosine cos( (2x1)u? / 2N) , JPEG, MPEG
- T(u,v) x0 ? N-1 y0 ? N-1 f(x,y)
g(x,y,u,v)f(x,y) u0 ? N-1 v0 ? N-1 T(u,v)
h(x,y,u,v) - g(x,y,u,v) g1(x,u) g2(y,v) separable 2D
N 1D
10Continuous wavelets
Mexican-hat ?(x) c (1-x2) exp(-x2/2) the second
derivative of a Gaussian
Construction of the Morlet wavelet as a sinus
modeled by a Gaussian function
set of wavelet basis functions ?s,t(x) ?s,t(x)
?( (x-t) / s) / ?s, s gt 0 the scale and t the
translation The CWT of f(x) is then Wf(s,t)
ltf, ?s,tgt ? f(x) ?s,t(x) dx f(x) (1 / C? )
? ? Wf(s,t) ?s,t(x) dt ds/s2
11Continuous wavelet transform
12Time frequency tilings
In the discrete wavelet transform one works with
factors 2 Also here there is a Fast Wavelet
Transformation
13Example 3 scale 2D FWT
14Example