Title: Stiffness Method Chapter 2
1Stiffness MethodChapter 2
2Definition
For an element, a stiffness matrix is a
matrix such that where relates local
coordinates nodal displacements to local
forces of a single element.
3(No Transcript)
4Spring Element
k
1
2
L
5Definitions
k - spring constant
node
node
6Examples of Stiffness
- Uniaxial Bar k AE/L
- Circular Torsion k GJ/L
- One-dimensional heat conduction
k AKxx/L - One-dimensional fluid flow (porous medium)
k AKxx/L
7Stiffness Relationship for a Spring
8Steps in Process
- Discretize and Select Element Type
- Select a Displacement Function
- Define Strain/Displacement and Stress/Strain
Relationships - Derive Element Stiffness Matrix Eqs.
- Assemble Equations and Introduce B.C.s
- Solve for the Unknown Degrees of Freedom
- Solve for Element Stresses and Strains
- Interpret the Results
9General Steps
- Outlined on Previous Slide
- Derive Stiffness Matrix
- Illustrate Usage for Spring Assemblies
10Step 1 - Select the Element Type
k
1
2
T
T
L
11Step 2 - Select a Displacement Function
- Assume a displacement function
- Assume a linear function.
-
- Number of coefficients number of d-o-f
- Write in matrix form.
-
12Express as function of and
13Substituting back into
Yields
14In matrix form
15Shape Functions
N1 and N2 are called Shape Functions or
Interpolation Functions. They express the shape
of the assumed displacements. N1 1 N2 0 at
node 1 N1 0 N2 1 at node 2 N1 N2 1
16N1
1
2
L
17N2
1
2
L
18N1
N2
1
2
L
19Step 3 - Define Strain/Displacement and
Stress/Strain Relationships
T - tensile force ? - total elongation
20Deformed Linear Spring Element
k
1
2
L
21Step 4 - Derive the Element Stiffness Matrix and
Equations
22(No Transcript)
23Step 5 - Assemble the Element Equations to Obtain
the Global Equations and Introduce the B.C.
Note not simple addition!
24Step 6 - Solve for Nodal Displacements
25Step 7 - Solve for Element Forces
Once displacements at each node are known, then
substitute back into element stiffness
equations to obtain element nodal forces.
26Two Spring Assembly
2
1
3
x
F3x
F2x
k1
k2
27(No Transcript)
28Elements 1 and 2 remain connected at node 3. This
is called the continuity or compatibility
requirement.
29(No Transcript)
30Nodal forces consistent with element force sign
convention.
2
3
1
F1x
F2x
F3x
31(No Transcript)
32(No Transcript)
33Assembly of K - An Alternative Look.
2
1
3
x
F3x
F2x
k1
k2
34Assembly of K
35Expand Local k matrices to Global Size
36Force Equilibrium
37(No Transcript)
38(No Transcript)
39Compatibility
40Boundary Conditions
- Must Specify B.C.s to prohibit rigid body
motion. - Two type of B.C.s
- Homogeneous - displacements 0
- Nonhomogeneous - displacements nonzero value
41Partitioning
422
1
3
x
F3x
F2x
k1
k2
43(No Transcript)
44Homogeneous B.C.s
- Delete row and column corresponding to B.C.
- Solve for unknown displacements.
- Compute unknown forces (reactions) from original
(unmodified) stiffness matrix.
45Nonhomogeneous B.C.s
46Nonhomogeneous B.C.s
47Nonhomogeneous B.C.s
- Transfer terms associated with known d-o-f to
RHS. - Solve for unknown displacements.
- Compute unknown forces (reactions) from original
(unmodified) stiffness matrix.
48Properties of K Matrix
- Symmetric - both element k and global K
- K is singular. Must apply B.C. to prohibit
rigid body motion. - Terms on main diagonal are positive Kii and kii
49EXAMPLE Three Spring Assembly
k22000 lb/in
k11000 lb/in
k33000 lb/in
2
4
1
3
x
2
5000 lb
1
3
50(No Transcript)
51(No Transcript)
52(No Transcript)
53(No Transcript)
54(No Transcript)
55Element 1
1
909.1 lb
3
909.1 lb
56Element 2
2
909.1 lb
4
3
909.1 lb
57Element 3
3
4090.9 lb
2
4090.9 lb
58EXAMPLENonhomogeneous B.C.
k
k
k
k
4
2
3
x
1
5
1
2
3
4
d
k200 kN/m
59(No Transcript)
60(No Transcript)
61(No Transcript)
62(No Transcript)
63(No Transcript)
64(No Transcript)
65(No Transcript)
66Element 1
1
1.0 kN
2
1.0 kN
67Three Spring Assembly
k2
3
k1
2
2
P
x
k3
2
1
4
1
2
3
Rigid Bar
68(No Transcript)
69Free Body Diagram
1
2
1
70Free Body Diagram
P
71Free Body Diagram
2
3
3
2
2
4
4
3
72Matrix Form of Stiffness Equations
73Applying B.C.
74(No Transcript)
75Solving for Global Forces
76Potential Energy Approach
- Equilibrium at minimum potential energy.
- Total potential energy defined as the sum of
internal strain energy U and potential energy of
external forces W. - ?p U W
77System
F
x
k
78Force-Deformation Curve
79(No Transcript)
80Stationary Value
81Stationary Values
G
maximum
neutral
minimum
x
82Stationary Value
83Principle of Minimum Potential Energy
Equilibrium occurs when the qi define a state
such that ??p 0 for arbitrary admissible
variations in ?q1 from the equilibrium state
84Admissible Variations in Displacements
An admissible variation is one in which the
displacement field satisfies the
boundary conditions and inter-element continuity.
85Admissible Displacements
u
Admissible Displacement Function u ?u
?u
Actual Displacement Function
x
86For Admissible Variations in Displacements
87For Admissible Variations in Displacements
88F
F
x
k
k 500 lb/in
x
89(No Transcript)
90(No Transcript)
91(No Transcript)
92EXAMPLE
k22000 lb/in
k11000 lb/in
k33000 lb/in
2
4
1
3
x
2
5000 lb
1
3
93(No Transcript)
94(No Transcript)
95(No Transcript)