Chapter 11 Arenes and Aromaticity - PowerPoint PPT Presentation

1 / 57
About This Presentation
Title:

Chapter 11 Arenes and Aromaticity

Description:

1845 August W. von Hofmann isolates benzene from coal tar. ... Aniline. Benzene Derivatives. NH2. Dr. Wolf's CHM 201 & 202. 11-48 ... – PowerPoint PPT presentation

Number of Views:863
Avg rating:5.0/5.0
Slides: 58
Provided by: monte5
Category:

less

Transcript and Presenter's Notes

Title: Chapter 11 Arenes and Aromaticity


1
Chapter 11Arenes and Aromaticity
Dr. Wolf's CHM 201 202
11-1
2
Examples of Aromatic Hydrocarbons
Benzene
Toluene
Naphthalene
Dr. Wolf's CHM 201 202
11-2
3
11.1Benzene
Dr. Wolf's CHM 201 202
11-3
4
Some history
  • 1834 Eilhardt Mitscherlich isolates a new
    hydrocarbon and determines its empirical
    formula to be CnHn. Compound comes to be
    called benzene.
  • 1845 August W. von Hofmann isolates benzene
    from coal tar.
  • 1866 August Kekulé proposes structure of
    benzene.

Dr. Wolf's CHM 201 202
11-4
5
11.2Kekulé and theStructure of Benzene
Dr. Wolf's CHM 201 202
11-5
6
Kekulé Formulation of Benzene
  • Kekulé proposed a cyclic structure for C6H6with
    alternating single and double bonds.

Dr. Wolf's CHM 201 202
11-6
7
Kekulé Formulation of Benzene
  • Later, Kekulé revised his proposal by
    suggestinga rapid equilibrium between two
    equivalentstructures.

Dr. Wolf's CHM 201 202
11-7
8
Kekulé Formulation of Benzene
  • However, this proposal suggested isomers of
    thekind shown were possible. Yet, none were
    everfound.

Dr. Wolf's CHM 201 202
11-8
9
Structure of Benzene
  • Structural studies of benzene do not support
    theKekulé formulation. Instead of alternating
    singleand double bonds, all of the CC bonds are
    thesame length.

Benzene has the shape of a regular hexagon.
Dr. Wolf's CHM 201 202
11-9
10
All CC bond distances 140 pm
140 pm
140 pm
140 pm
140 pm
140 pm
140 pm
Dr. Wolf's CHM 201 202
11-10
11
All CC bond distances 140 pm
146 pm
140 pm
140 pm
140 pm
140 pm
134 pm
140 pm
140 pm
  • 140 pm is the average between the CC single
    bond distance and the double bond distance in
    1,3-butadiene.

Dr. Wolf's CHM 201 202
11-11
12
11.3A Resonance Picture of Bonding in Benzene
Dr. Wolf's CHM 201 202
11-12
13
Kekulé Formulation of Benzene
  • Instead of Kekulé's suggestion of a
    rapidequilibrium between two structures

Dr. Wolf's CHM 201 202
11-13
14
Resonance Formulation of Benzene
  • express the structure of benzene as a
    resonancehybrid of the two Lewis structures.
    Electrons arenot localized in alternating single
    and double bonds,but are delocalized over all
    six ring carbons.

Dr. Wolf's CHM 201 202
11-14
15
Resonance Formulation of Benzene
  • Circle-in-a-ring notation stands for resonance
    description of benzene (hybrid of two Kekulé
    structures)

Dr. Wolf's CHM 201 202
11-15
16
11.4The Stability of Benzene
  • benzene is the best and most familiar example of
    a substance that possesses "special stability"
    or "aromaticity"
  • aromaticity is a level of stability that is
    substantially greater for a molecule than would
    be expected on the basis of any of the Lewis
    structures written for it

Dr. Wolf's CHM 201 202
11-16
17
Thermochemical Measures of Stability
  • heat of hydrogenation compare
    experimentalvalue with "expected" value for
    hypothetical"cyclohexatriene"

Pt

3H2
DH 208 kJ
Dr. Wolf's CHM 201 202
11-17
18
Figure 11.2 (p 404)
3 x cyclohexene

360 kJ/mol
231 kJ/mol
208 kJ/mol
120 kJ/mol
Dr. Wolf's CHM 201 202
11-18
19
Figure 11.2 (p 404)
3 x cyclohexene
  • "expected" heat of hydrogenation of benzene is 3
    x heat of hydrogenation of cyclohexene


360 kJ/mol
120 kJ/mol
Dr. Wolf's CHM 201 202
11-19
20
Figure 11.2 (p 404)
3 x cyclohexene
  • observed heat of hydrogenation is 152 kJ/mol
    less than "expected"
  • benzene is 152 kJ/mol more stable thanexpected
  • 152 kJ/mol is the resonance energy of benzene


360 kJ/mol
208 kJ/mol
Dr. Wolf's CHM 201 202
11-20
21
Figure 11.2 (p 404)
  • hydrogenation of 1,3-cyclohexadiene (2H2) gives
    off more heat than hydrogenation of benzene (3H2)!


231 kJ/mol
208 kJ/mol
Dr. Wolf's CHM 201 202
11-21
22
Cyclic conjugation versus noncyclic conjugation
3H2
Pt
heat of hydrogenation 208 kJ/mol
3H2
Pt

heat of hydrogenation 337 kJ/mol
Dr. Wolf's CHM 201 202
11-22
23
Resonance Energy of Benzene
  • compared to localized 1,3,5-cyclohexatriene
  • 152 kJ/mol
  • compared to 1,3,5-hexatriene
  • 129 kJ/mol
  • exact value of resonance energy of benzene
    depends on what it is compared to, but
    regardless of model, benzene is more stable
    than expected by a substantial amount

Dr. Wolf's CHM 201 202
11-23
24
11.5An Orbital Hybridization Viewof Bonding in
Benzene
Dr. Wolf's CHM 201 202
11-24
25
Orbital Hybridization Model of Bonding in Benzene
  • Planar ring of 6 sp2 hybridized carbons

Figure 11.3
Dr. Wolf's CHM 201 202
11-25
26
Orbital Hybridization Model of Bonding in Benzene
  • Each carbon contributes a p orbital
  • Six p orbitals overlap to give cyclic p
    systemsix p electrons delocalized throughout p
    system

Figure 11.3
Dr. Wolf's CHM 201 202
11-26
27
Orbital Hybridization Model of Bonding in Benzene
  • High electron density above and below plane of
    ring

Figure 11.3
Dr. Wolf's CHM 201 202
11-27
28
11.6The p Molecular Orbitalsof Benzene
Dr. Wolf's CHM 201 202
11-28
29
Benzene MOs
Antibondingorbitals
Bondingorbitals
  • 6 p AOs combine to give 6 p MOs
  • 3 MOs are bonding 3 are antibonding

Dr. Wolf's CHM 201 202
11-29
30
Benzene MOs
Antibondingorbitals
Bondingorbitals
  • All bonding MOs are filled
  • No electrons in antibonding orbitals

Dr. Wolf's CHM 201 202
11-30
31
The Three Bonding p MOs of Benzene
Dr. Wolf's CHM 201 202
11-31
32
11.7Substituted Derivatives of Benzene and
Their Nomenclature
Dr. Wolf's CHM 201 202
11-32
33
General Points
  • 1) Benzene is considered as the parent andcomes
    last in the name.

Dr. Wolf's CHM 201 202
11-33
34
Examples
NO2
Br
C(CH3)3
Bromobenzene
tert-Butylbenzene
Nitrobenzene
Dr. Wolf's CHM 201 202
11-34
35
General Points
  • 1) Benzene is considered as the parent andcomes
    last in the name.
  • 2) List substituents in alphabetical order
  • 3) Number ring in direction that gives lowest
    locant at first point of difference

Dr. Wolf's CHM 201 202
11-35
36
Example
Cl
Br
F
2-bromo-1-chloro-4-fluorobenzene
Dr. Wolf's CHM 201 202
11-36
37
Ortho, Meta, and Para
alternative locants for disubstitutedderivatives
of benzene
1,2 ortho(abbreviated o-)
1,3 meta(abbreviated m-)
1,4 para(abbreviated p-)
Dr. Wolf's CHM 201 202
11-37
38
Examples
NO2
CH2CH3
o-ethylnitrobenzene
m-dichlorobenzene
(1-ethyl-2-nitrobenzene)
(1,3-dichlorobenzene)
Dr. Wolf's CHM 201 202
11-38
39
Benzene Derivatives
Certain monosubstituted derivatives of benzene
have unique names
Dr. Wolf's CHM 201 202
11-39
40
Benzene Derivatives
Benzaldehyde
Dr. Wolf's CHM 201 202
11-40
41
Benzene Derivatives
Benzoic acid
Dr. Wolf's CHM 201 202
11-41
42
Benzene Derivatives
Styrene
Dr. Wolf's CHM 201 202
11-42
43
Benzene Derivatives
Toluene
Dr. Wolf's CHM 201 202
11-43
44
Benzene Derivatives
Acetophenone
Dr. Wolf's CHM 201 202
11-44
45
Benzene Derivatives
Phenol
Dr. Wolf's CHM 201 202
11-45
46
Benzene Derivatives
Anisole
Dr. Wolf's CHM 201 202
11-46
47
Benzene Derivatives
Aniline
Dr. Wolf's CHM 201 202
11-47
48
Benzene derivative names can be used as parent
Anisole
p-Nitroanisoleor4-Nitroanisole
Dr. Wolf's CHM 201 202
11-48
49
Easily confused names
CH2
OH
phenyl
phenol
benzyl
Dr. Wolf's CHM 201 202
11-49
50
11.8Polycyclic Aromatic Hydrocarbons
Dr. Wolf's CHM 201 202
11-50
51
Naphthalene
  • resonance energy 255 kJ/mol

most stable Lewis structureboth rings
correspond to Kekulé benzene
Dr. Wolf's CHM 201 202
11-51
52
Anthracene and Phenanthrene
Phenanthrene
Anthracene
resonance energy
347 kJ/mol
381 kJ/mol
Dr. Wolf's CHM 201 202
11-52
53
11.9Physical Properties of Arenes
Dr. Wolf's CHM 201 202
11-53
54
Physical Properties
  • Resemble other hydrocarbons
  • nonpolar
  • insoluble in water
  • less dense than water

Dr. Wolf's CHM 201 202
11-54
55
11.10Reactions of ArenesA Preview
  • 1. Some reactions involve the ring.
  • 2. In other reactions the ring is a substituent.

Dr. Wolf's CHM 201 202
11-55
56
1. Reactions involving the ring
  • a) Reduction
  • Catalytic hydrogenation (Section 11.4) Birch
    reduction (Section 11.11)
  • b) Electrophilic aromatic substitution (Chapter
    12)
  • c) Nucleophilic aromatic substitution (Chapter
    23)

2. The ring as a substituent (Sections
11.12-11.17)
Dr. Wolf's CHM 201 202
11-56
57
Reduction of Benzene Rings
catalytic hydrogenation (Section 11.4)
Birch reduction (Section 11.11)
Dr. Wolf's CHM 201 202
11-57
Write a Comment
User Comments (0)
About PowerShow.com