Title: Chapter 11 Arenes and Aromaticity
1Chapter 11Arenes and Aromaticity
Dr. Wolf's CHM 201 202
11-1
2Examples of Aromatic Hydrocarbons
Benzene
Toluene
Naphthalene
Dr. Wolf's CHM 201 202
11-2
311.1Benzene
Dr. Wolf's CHM 201 202
11-3
4Some history
- 1834 Eilhardt Mitscherlich isolates a new
hydrocarbon and determines its empirical
formula to be CnHn. Compound comes to be
called benzene. - 1845 August W. von Hofmann isolates benzene
from coal tar. - 1866 August Kekulé proposes structure of
benzene.
Dr. Wolf's CHM 201 202
11-4
511.2Kekulé and theStructure of Benzene
Dr. Wolf's CHM 201 202
11-5
6Kekulé Formulation of Benzene
- Kekulé proposed a cyclic structure for C6H6with
alternating single and double bonds.
Dr. Wolf's CHM 201 202
11-6
7Kekulé Formulation of Benzene
- Later, Kekulé revised his proposal by
suggestinga rapid equilibrium between two
equivalentstructures.
Dr. Wolf's CHM 201 202
11-7
8Kekulé Formulation of Benzene
- However, this proposal suggested isomers of
thekind shown were possible. Yet, none were
everfound.
Dr. Wolf's CHM 201 202
11-8
9Structure of Benzene
- Structural studies of benzene do not support
theKekulé formulation. Instead of alternating
singleand double bonds, all of the CC bonds are
thesame length.
Benzene has the shape of a regular hexagon.
Dr. Wolf's CHM 201 202
11-9
10All CC bond distances 140 pm
140 pm
140 pm
140 pm
140 pm
140 pm
140 pm
Dr. Wolf's CHM 201 202
11-10
11All CC bond distances 140 pm
146 pm
140 pm
140 pm
140 pm
140 pm
134 pm
140 pm
140 pm
- 140 pm is the average between the CC single
bond distance and the double bond distance in
1,3-butadiene.
Dr. Wolf's CHM 201 202
11-11
1211.3A Resonance Picture of Bonding in Benzene
Dr. Wolf's CHM 201 202
11-12
13Kekulé Formulation of Benzene
- Instead of Kekulé's suggestion of a
rapidequilibrium between two structures
Dr. Wolf's CHM 201 202
11-13
14Resonance Formulation of Benzene
- express the structure of benzene as a
resonancehybrid of the two Lewis structures.
Electrons arenot localized in alternating single
and double bonds,but are delocalized over all
six ring carbons.
Dr. Wolf's CHM 201 202
11-14
15Resonance Formulation of Benzene
- Circle-in-a-ring notation stands for resonance
description of benzene (hybrid of two Kekulé
structures)
Dr. Wolf's CHM 201 202
11-15
1611.4The Stability of Benzene
- benzene is the best and most familiar example of
a substance that possesses "special stability"
or "aromaticity" - aromaticity is a level of stability that is
substantially greater for a molecule than would
be expected on the basis of any of the Lewis
structures written for it
Dr. Wolf's CHM 201 202
11-16
17Thermochemical Measures of Stability
- heat of hydrogenation compare
experimentalvalue with "expected" value for
hypothetical"cyclohexatriene"
Pt
3H2
DH 208 kJ
Dr. Wolf's CHM 201 202
11-17
18Figure 11.2 (p 404)
3 x cyclohexene
360 kJ/mol
231 kJ/mol
208 kJ/mol
120 kJ/mol
Dr. Wolf's CHM 201 202
11-18
19Figure 11.2 (p 404)
3 x cyclohexene
- "expected" heat of hydrogenation of benzene is 3
x heat of hydrogenation of cyclohexene
360 kJ/mol
120 kJ/mol
Dr. Wolf's CHM 201 202
11-19
20Figure 11.2 (p 404)
3 x cyclohexene
- observed heat of hydrogenation is 152 kJ/mol
less than "expected" - benzene is 152 kJ/mol more stable thanexpected
- 152 kJ/mol is the resonance energy of benzene
360 kJ/mol
208 kJ/mol
Dr. Wolf's CHM 201 202
11-20
21Figure 11.2 (p 404)
- hydrogenation of 1,3-cyclohexadiene (2H2) gives
off more heat than hydrogenation of benzene (3H2)!
231 kJ/mol
208 kJ/mol
Dr. Wolf's CHM 201 202
11-21
22Cyclic conjugation versus noncyclic conjugation
3H2
Pt
heat of hydrogenation 208 kJ/mol
3H2
Pt
heat of hydrogenation 337 kJ/mol
Dr. Wolf's CHM 201 202
11-22
23Resonance Energy of Benzene
- compared to localized 1,3,5-cyclohexatriene
- 152 kJ/mol
- compared to 1,3,5-hexatriene
- 129 kJ/mol
- exact value of resonance energy of benzene
depends on what it is compared to, but
regardless of model, benzene is more stable
than expected by a substantial amount
Dr. Wolf's CHM 201 202
11-23
2411.5An Orbital Hybridization Viewof Bonding in
Benzene
Dr. Wolf's CHM 201 202
11-24
25Orbital Hybridization Model of Bonding in Benzene
- Planar ring of 6 sp2 hybridized carbons
Figure 11.3
Dr. Wolf's CHM 201 202
11-25
26Orbital Hybridization Model of Bonding in Benzene
- Each carbon contributes a p orbital
- Six p orbitals overlap to give cyclic p
systemsix p electrons delocalized throughout p
system
Figure 11.3
Dr. Wolf's CHM 201 202
11-26
27Orbital Hybridization Model of Bonding in Benzene
- High electron density above and below plane of
ring
Figure 11.3
Dr. Wolf's CHM 201 202
11-27
2811.6The p Molecular Orbitalsof Benzene
Dr. Wolf's CHM 201 202
11-28
29Benzene MOs
Antibondingorbitals
Bondingorbitals
- 6 p AOs combine to give 6 p MOs
- 3 MOs are bonding 3 are antibonding
Dr. Wolf's CHM 201 202
11-29
30Benzene MOs
Antibondingorbitals
Bondingorbitals
- All bonding MOs are filled
- No electrons in antibonding orbitals
Dr. Wolf's CHM 201 202
11-30
31The Three Bonding p MOs of Benzene
Dr. Wolf's CHM 201 202
11-31
3211.7Substituted Derivatives of Benzene and
Their Nomenclature
Dr. Wolf's CHM 201 202
11-32
33General Points
- 1) Benzene is considered as the parent andcomes
last in the name.
Dr. Wolf's CHM 201 202
11-33
34Examples
NO2
Br
C(CH3)3
Bromobenzene
tert-Butylbenzene
Nitrobenzene
Dr. Wolf's CHM 201 202
11-34
35General Points
- 1) Benzene is considered as the parent andcomes
last in the name. - 2) List substituents in alphabetical order
- 3) Number ring in direction that gives lowest
locant at first point of difference
Dr. Wolf's CHM 201 202
11-35
36Example
Cl
Br
F
2-bromo-1-chloro-4-fluorobenzene
Dr. Wolf's CHM 201 202
11-36
37Ortho, Meta, and Para
alternative locants for disubstitutedderivatives
of benzene
1,2 ortho(abbreviated o-)
1,3 meta(abbreviated m-)
1,4 para(abbreviated p-)
Dr. Wolf's CHM 201 202
11-37
38Examples
NO2
CH2CH3
o-ethylnitrobenzene
m-dichlorobenzene
(1-ethyl-2-nitrobenzene)
(1,3-dichlorobenzene)
Dr. Wolf's CHM 201 202
11-38
39Benzene Derivatives
Certain monosubstituted derivatives of benzene
have unique names
Dr. Wolf's CHM 201 202
11-39
40Benzene Derivatives
Benzaldehyde
Dr. Wolf's CHM 201 202
11-40
41Benzene Derivatives
Benzoic acid
Dr. Wolf's CHM 201 202
11-41
42Benzene Derivatives
Styrene
Dr. Wolf's CHM 201 202
11-42
43Benzene Derivatives
Toluene
Dr. Wolf's CHM 201 202
11-43
44Benzene Derivatives
Acetophenone
Dr. Wolf's CHM 201 202
11-44
45Benzene Derivatives
Phenol
Dr. Wolf's CHM 201 202
11-45
46Benzene Derivatives
Anisole
Dr. Wolf's CHM 201 202
11-46
47Benzene Derivatives
Aniline
Dr. Wolf's CHM 201 202
11-47
48Benzene derivative names can be used as parent
Anisole
p-Nitroanisoleor4-Nitroanisole
Dr. Wolf's CHM 201 202
11-48
49Easily confused names
CH2
OH
phenyl
phenol
benzyl
Dr. Wolf's CHM 201 202
11-49
5011.8Polycyclic Aromatic Hydrocarbons
Dr. Wolf's CHM 201 202
11-50
51Naphthalene
- resonance energy 255 kJ/mol
most stable Lewis structureboth rings
correspond to Kekulé benzene
Dr. Wolf's CHM 201 202
11-51
52Anthracene and Phenanthrene
Phenanthrene
Anthracene
resonance energy
347 kJ/mol
381 kJ/mol
Dr. Wolf's CHM 201 202
11-52
5311.9Physical Properties of Arenes
Dr. Wolf's CHM 201 202
11-53
54Physical Properties
- Resemble other hydrocarbons
- nonpolar
- insoluble in water
- less dense than water
Dr. Wolf's CHM 201 202
11-54
5511.10Reactions of ArenesA Preview
- 1. Some reactions involve the ring.
- 2. In other reactions the ring is a substituent.
Dr. Wolf's CHM 201 202
11-55
561. Reactions involving the ring
- a) Reduction
- Catalytic hydrogenation (Section 11.4) Birch
reduction (Section 11.11) - b) Electrophilic aromatic substitution (Chapter
12) - c) Nucleophilic aromatic substitution (Chapter
23)
2. The ring as a substituent (Sections
11.12-11.17)
Dr. Wolf's CHM 201 202
11-56
57Reduction of Benzene Rings
catalytic hydrogenation (Section 11.4)
Birch reduction (Section 11.11)
Dr. Wolf's CHM 201 202
11-57