CT - PowerPoint PPT Presentation

1 / 23
About This Presentation
Title:

CT

Description:

16 binary bits (1100 0100 1100 0101) Double Word. 32 binary bits ... 0 fours 1 eight. Base 10. Base 2 = 11. George David. Associate Professor of Radiology ... – PowerPoint PPT presentation

Number of Views:60
Avg rating:3.0/5.0
Slides: 24
Provided by: george45
Category:
Tags: fours | kilobytes

less

Transcript and Presenter's Notes

Title: CT


1
CT
  • Seeram Chapter 2A
  • Digital Arithmetic

2
The Bit
  • Fundamental unit of computer storage
  • Only 2 allowable values
  • 0
  • 1
  • Computers do all operations with 0s
    1sBUTComputers group bits together

3
Popular Bit Groupings
  • Bit (binary digit)
  • Smallest binary unit has value 0 or 1 only
  • Byte
  • 8 bits
  • 28 256 unique values
  • Word
  • 16 bits
  • 216 65536 unique values

4
Special Binary Digit Grouping Terms
  • Nibble
  • 4 binary bits (0101)
  • Byte
  • 8 binary bits (1000 1011)
  • Word
  • 16 binary bits (1100 0100 1100 0101)
  • Double Word
  • 32 binary bits(1110 0100 0000 1011 0101 0101
    1110 0101)

5
of values which can be represented by 1 bit
2 unique combinations / values
1
2
6
of values which can be represented by 2 bits
1
2
4 unique combinations / values
3
4
7
of values which can be represented by 3 bits
5
1
6
2
7
3
8
4
8 unique combinations / values
8
of values which can be represented by bits
of possible Values
Possible Values
Bits
1 2 3 . . . 8
0, 1 00, 01, 10, 11 000, 001, 010, 011, 100, 101,
110, 111 . . . 00000000, 00000001, ... 11111111
2 1 2 2 2 4 2 3 8 . . . 2 8 256
9
Base 10
485
  • 485 means
  • 5 ones
  • 8 tens
  • 4 hundreds
  • Digit position
  • right digit
  • 1s or 100 s
  • Next digit to left
  • 10s or 101 s
  • Next digit to left
  • 100s or 102 s

10
Base 10 vs. Base 2
Base 10
Base 2
  • Digit position
  • right digit
  • 1s or 20 s
  • Next digit to left
  • 2s or 21 s
  • Next digit to left
  • 4s or 22 s
  • Next digit to left
  • 8s or 23 s
  • Digit position
  • right digit
  • 1s or 100 s
  • Next digit to left
  • 10s or 101 s
  • Next digit to left
  • 100s or 102 s
  • Next digit to left
  • 1000s or 103 s

11
Base 10 vs. Base 2
1011
Base 10
Base 2
  • 1011 means
  • 1 one
  • 1 tens
  • 0 hundreds
  • 1 thousand
  • 1011 means
  • 1 one
  • 1 two
  • 0 fours
  • 1 eight

11
12
Base 10 vs. Base 2
Base 10
Base 2
  • 0000 00001 10010 20011 30100 40101 50110 6
    0111 7

1000 81001 91010 101011 111100 121101 13111
0 141111 15
13
Shortcut NomenclatureGrouping Binary digits
  • Binary (base 2) s are awkward (101100111010)
  • Binary digits often grouped by 3s or 4s
  • Grouping by 3s
  • octal
  • Grouping by 4s
  • hexadecimal

14
Shortcut NomenclatureOctal - Grouping by 3s
  • Each group of 3 digits assigned its binary value

Grouping by 3s
000 0001 1010 2011 3100 4101 5110
6111 7
101100111010 101 100 111 010 5 4
7 25472 Octal (Base 8)
15
Shortcut NomenclatureOctal - Grouping by 3s
  • Octal Value is actually base 8

Base 8
  • 5472 means
  • 2 1s
  • 7 8s
  • 4 64s
  • 5 512s

Grouping by 3s
101100111010 101 100 111 010 5 4
7 25472 Octal (Base 8)
16
Try this one!
  • Base 2 110001
  • Octal ?
  • Decimal ?

17
Shortcut NomenclatureHexadecimal - Grouping by
4s
  • Each group of 3 digits assigned its binary value

Grouping by 4s
0000 00001 10010 20011 30100 40101 50110 6
0111 7
1000 81001 91010 A1011 B1100 C1101 D1110 E
1111 F
101100111010 1011 0011 1010 B 3
AB3A Hexadecimal(Base 16)
18
Shortcut NomenclatureHexadecimal - Grouping by
4s
  • Hexadecimal is actually base 16

Base 16
  • B3A means
  • A or 10 1s
  • 3 16s
  • B or 11 256s

Grouping by 4s
101100111010 1011 0011 1010 B 3
AB3A Hexadecimal(Base 16)
19
Try this one!
  • Base 2 10010001
  • Hexadecimal ?
  • Decimal ?

20
Counting Bytes
  • bytes different from of unique values for a
    byte
  • Kilobyte
  • 210 or 1024 bytes
  • sometimes rounded to 1000 bytes
  • Megabyte
  • 213 or 1,048,576 bytes or 1024 kilobytes
  • sometimes rounded to 1,000,000 bytes or 1,000
    kilobytes

21
How Computers Handle Text
  • Each character assigned a
  • Assignment standards
  • ASCII
  • American Standard Code for Information
    Interchange
  • EBCDIC
  • Extended binary coded decimal interchange code

22
ASCII Codes
23
How Computers Handle TextAn Example George
Letter Value Binary Hexadecimal
  • G 71 0100 0111 47e 101 0110 0101 65o
    111 0110 1111 6Fr 114 0111 0010 72g
    103 0110 0111 67e 101 0110 0101 65

ASCII
Write a Comment
User Comments (0)
About PowerShow.com