Title: CT
1CT
- Seeram Chapter 2A
- Digital Arithmetic
2The Bit
- Fundamental unit of computer storage
- Only 2 allowable values
- 0
- 1
- Computers do all operations with 0s
1sBUTComputers group bits together
3Popular Bit Groupings
- Bit (binary digit)
- Smallest binary unit has value 0 or 1 only
- Byte
- 8 bits
- 28 256 unique values
- Word
- 16 bits
- 216 65536 unique values
4Special Binary Digit Grouping Terms
- Nibble
- 4 binary bits (0101)
- Byte
- 8 binary bits (1000 1011)
- Word
- 16 binary bits (1100 0100 1100 0101)
- Double Word
- 32 binary bits(1110 0100 0000 1011 0101 0101
1110 0101)
5 of values which can be represented by 1 bit
2 unique combinations / values
1
2
6 of values which can be represented by 2 bits
1
2
4 unique combinations / values
3
4
7 of values which can be represented by 3 bits
5
1
6
2
7
3
8
4
8 unique combinations / values
8 of values which can be represented by bits
of possible Values
Possible Values
Bits
1 2 3 . . . 8
0, 1 00, 01, 10, 11 000, 001, 010, 011, 100, 101,
110, 111 . . . 00000000, 00000001, ... 11111111
2 1 2 2 2 4 2 3 8 . . . 2 8 256
9Base 10
485
- 485 means
- 5 ones
- 8 tens
- 4 hundreds
- Digit position
- right digit
- 1s or 100 s
- Next digit to left
- 10s or 101 s
- Next digit to left
- 100s or 102 s
10Base 10 vs. Base 2
Base 10
Base 2
- Digit position
- right digit
- 1s or 20 s
- Next digit to left
- 2s or 21 s
- Next digit to left
- 4s or 22 s
- Next digit to left
- 8s or 23 s
- Digit position
- right digit
- 1s or 100 s
- Next digit to left
- 10s or 101 s
- Next digit to left
- 100s or 102 s
- Next digit to left
- 1000s or 103 s
11Base 10 vs. Base 2
1011
Base 10
Base 2
- 1011 means
- 1 one
- 1 tens
- 0 hundreds
- 1 thousand
- 1011 means
- 1 one
- 1 two
- 0 fours
- 1 eight
11
12Base 10 vs. Base 2
Base 10
Base 2
- 0000 00001 10010 20011 30100 40101 50110 6
0111 7
1000 81001 91010 101011 111100 121101 13111
0 141111 15
13Shortcut NomenclatureGrouping Binary digits
- Binary (base 2) s are awkward (101100111010)
- Binary digits often grouped by 3s or 4s
- Grouping by 3s
- octal
- Grouping by 4s
- hexadecimal
14Shortcut NomenclatureOctal - Grouping by 3s
- Each group of 3 digits assigned its binary value
Grouping by 3s
000 0001 1010 2011 3100 4101 5110
6111 7
101100111010 101 100 111 010 5 4
7 25472 Octal (Base 8)
15Shortcut NomenclatureOctal - Grouping by 3s
- Octal Value is actually base 8
Base 8
- 5472 means
- 2 1s
- 7 8s
- 4 64s
- 5 512s
Grouping by 3s
101100111010 101 100 111 010 5 4
7 25472 Octal (Base 8)
16Try this one!
- Base 2 110001
- Octal ?
- Decimal ?
17Shortcut NomenclatureHexadecimal - Grouping by
4s
- Each group of 3 digits assigned its binary value
Grouping by 4s
0000 00001 10010 20011 30100 40101 50110 6
0111 7
1000 81001 91010 A1011 B1100 C1101 D1110 E
1111 F
101100111010 1011 0011 1010 B 3
AB3A Hexadecimal(Base 16)
18Shortcut NomenclatureHexadecimal - Grouping by
4s
- Hexadecimal is actually base 16
Base 16
- B3A means
- A or 10 1s
- 3 16s
- B or 11 256s
Grouping by 4s
101100111010 1011 0011 1010 B 3
AB3A Hexadecimal(Base 16)
19Try this one!
- Base 2 10010001
- Hexadecimal ?
- Decimal ?
20Counting Bytes
- bytes different from of unique values for a
byte - Kilobyte
- 210 or 1024 bytes
- sometimes rounded to 1000 bytes
- Megabyte
- 213 or 1,048,576 bytes or 1024 kilobytes
- sometimes rounded to 1,000,000 bytes or 1,000
kilobytes
21How Computers Handle Text
- Each character assigned a
- Assignment standards
- ASCII
- American Standard Code for Information
Interchange - EBCDIC
- Extended binary coded decimal interchange code
22ASCII Codes
23How Computers Handle TextAn Example George
Letter Value Binary Hexadecimal
- G 71 0100 0111 47e 101 0110 0101 65o
111 0110 1111 6Fr 114 0111 0010 72g
103 0110 0111 67e 101 0110 0101 65
ASCII