Sequential Aggregate Signatures and Multisignatures Without Random Oracles - PowerPoint PPT Presentation

About This Presentation
Title:

Sequential Aggregate Signatures and Multisignatures Without Random Oracles

Description:

S-BGP sequence of messages sigs. 4096 byte size limit (M1, ... PKi = e(g,g)ai ,hi=gyi', ui,1=gyi,1...,um, =gyi,m. SK =ai ,yi', yi,1,...,yi,m. Agg(SKi,Mi, ... – PowerPoint PPT presentation

Number of Views:82
Avg rating:3.0/5.0
Slides: 16
Provided by: danb180
Category:

less

Transcript and Presenter's Notes

Title: Sequential Aggregate Signatures and Multisignatures Without Random Oracles


1
Sequential Aggregate Signatures and
MultisignaturesWithout Random Oracles
Steve Lu, Rafail Ostrovsky, Amit Sahai, Hovav
Shacham, and Brent Waters
2
Secure BGP
  • BGP Speakers send path updates messages
  • S-BGP sequence of messages sigs.
  • 4096 byte size limit

(M1,?1)
(M1,?1), (M2,?2), (M3,?3)
(M1,?1), (M2,?2)
3
Aggregate Sigs BGLS03
Sign
Aggregate
4
Aggregate Signatures BGLS03
  • A single short aggregate provides nonrepudiation
    for many different messages under many different
    keys
  • More general than multisignatures
  • Applications
  • X.509 certificate chains
  • Secure BGP route attestations
  • PGP web of trust

5
BGLS Aggregate Sigs
  • BLS Sigs
  • PK ga SKa
  • Sign(SK,M) ?H(M)a
  • Verify(PK,M,?) e(?,g)e( H(M), PK)
  • Secure in R.O. Model --- Deterministic Signatures

6
BGLS Aggregate Sigs
  • PKi gai SKiai
  • Sign(SKi,Mi) ?iH(Mi)ai
  • Aggregate(?1,?n) ??i1n ?i
  • Verify(PKi,M1,,Mn ,?) e(?,g)? i1,n
    e( H(Mi), PKi)
  • Verification requires n pairings

7
Difficulty w/o Random Oracles
  • Known efficient signatures have a random
    component
  • Strong RSA sigsGHR 99, CS99
  • B-Map BB04,CL04.W05
  • Tree- sigs
  • Difficult to aggregate
  • Independent signatures gt Independent randomness

8
Sequential Aggregates LMRS04
Sign and Aggregate
  • Signing and Aggregation are a single operation
  • Inherently sequenced not appropriate for PGP

9
Our Approach
  • Build from W05 signatures
  • Signer uses same randomess from previous sig
  • Then re-randomizes

10
Our Aggregate Sigs
  • W05 Sigs
  • PK e(g,g)a ,h, u1,,um SKa
  • Sign(SK,M) ?(?,?)ga (h ?i1,m uMi)r
    , g-r
  • Verify(PK,M,?) e(? ,g) e( ?, h ?i1,m
    uMi)e(g,g)a
  • Secure w/o R.O.s

11
Our Aggregate Sigs
  • PKi e(g,g)ai ,higyi, ui,1gyi,1,um, gyi,m
  • SK ai ,yi, yi,1,,yi,m
  • Agg(SKi,Mi,??1,?2)
  • xDL(h ?j1,m uMi,j )
  • ?(?,?)ga ?2x ?1, ?2
  • Verify(PK,M1,Mn,?(?,?))
  • e(? ,g) e( ?, ?i1n hj ?j1,m
    uMi,j)?i1n e(g,g)ai

Know DL PK
12
Comparisons
Shorter than LMRS
Faster Ver. than BGLS
13
Summary and Open Problems
  • Sequential Aggregate Signatures w/o R.O.
  • Use same randomness sequentially
  • Arguably better Performance than R.O. schemes
  • Multi-Sigs and Verifiable Enc. Sigs
  • Shorter Public Parameters
  • Certificate Chains
  • Full Aggregate Signatures

14
THE END
15
Sequential Aggregate Chosen-Key Model
AggSign() oracle
Adversary
  • Nontriviality
  • s is a valid sequential aggregate
  • challenge key pk pkj for some j
  • No oracle query at pk1,,pkjM1,,Mj.
Write a Comment
User Comments (0)
About PowerShow.com