Intercomparison of SCIAMACHY NO2, - PowerPoint PPT Presentation

1 / 17
About This Presentation
Title:

Intercomparison of SCIAMACHY NO2,

Description:

Operational air-quality forecasts: http://www.prevair.org/ Model ingredients: ... Simulated SCIA-equiv column = kernel vector model NO2 profile ... – PowerPoint PPT presentation

Number of Views:53
Avg rating:3.0/5.0
Slides: 18
Provided by: henk161
Category:

less

Transcript and Presenter's Notes

Title: Intercomparison of SCIAMACHY NO2,


1
Intercomparison of SCIAMACHY NO2, the Chimère
air-quality model and surface observations
Nadège Blond, LISA, Paris, France Henk Eskes,
Folkert Boersma, Ronald van der A KNMI,
Netherlands Michel van Roozendael, Isabelle De
Smedt BIRA-IASB, Belgium
2
Slant column retrieval approach (BIRA-IASB)
DOAS slant column "raw" L1, v 4.02 L1, v 5.01
L1 Non-linear least-squares inversion
(Marquardt-Levenberg) Wavelength window 426.3
- 451.3 NO2 243K (Bogumil), O3 (Bogumil),
O2-O2, H2O 2nd order polynomial Undersampling
cross section Ring (Vountas) Offset
correction based on measurement over Indian Ocean
3
Combined retrieval - modelling - assimilation
approach to SCIA NO2
Careful treatment needed for Clouds Surface
albedo Profile shape Aerosol
4
Slant to vertical column retrieval approach (KNMI)
Air-mass factor calculation Temperature
correction (NO2 cross section) TM3 / TM4
(tropospheric) CTM Assimilation of slant
columns -gt stratospheric "background" Fresco
cloud fraction and cloud top pressure TOMS /
GOME combined albedo map (Herman, Koelemeijer)
DAK RTM height-dependent AMF lookup table
Tropospheric AMF based on TM profile shape,
clouds Product Detailed error estimates
Averaging kernels
5
Validation results (ACVE-2), stratosphere J. C.
Lambert
NO2 products SCIA processor IUP SAO
BIRA-IASB Heidelberg
6
Combined retrieval - modelling - assimilation
approach to GOME NO2
7
Chimère model
Developed in France R. Vautard, H. Schmidt, L.
Menut, M. Beekman, N. Blond, ... ) Operational
air-quality forecasts http//www.prevair.org/ Mo
del ingredients MELCHIOR chemistry (82
species, 333 reactions) EMEP emissions ECMWF
meteorological analyses 15 vertical layers,
surface - 200 hPa Boundary conditions from
MOZART monthly-mean climatology
8
Emissions
9
Intercomparisons Chimère, SCIA and surface
observations
Motivation Lack of profile observations of NO2
for validation purposes use model as
intermediate for indirect validation
study Approach Space-time collocation of
Chimère fields to individual SCIA pixels
Application of averaging kernels Simulated
SCIA-equiv column kernel vector model NO2
profile One year of SCIA data, 2003 Cloud
free (cloud radiance lt 50) Advantages
Compare model-SCIA under exactly same conditions
(e.g. cloud free) Comparison independent of
profile shape assumptions in the retrieval
10
Chimère and surface observations (RIVM, NL)
  • surface observation
  • - Chimère
  • Netherlands
  • (rural stations)
  • Bias 0.1 ppb
  • RMS 7.2 ppb
  • Correl. 0.66

11
SCIAMACHY vs. Chimère yearly mean
Yearly-mean bias 0.2 1015 molec cm-2, RMS 2.9,
correl.coeff. 0.73 Cloud-free pixels
12
SCIAMACHY vs. Chimère 27 Feb 2004
13
SCIAMACHY vs. Chimère 28 Mar 2004
14
SCIAMACHY vs. Chimère 16 April 2004
15
SCIAMACHY vs. Chimère 16 Sep 2004
16
Synergy Surface - Chimère - SCIAMACHY
17
Conclusions NO2 comparisons
SCIAMACHY - Chimère - surface Yearly mean
- very small bias SCIA - Chimère and
Chimère - surface - Correlation coefficients
0.7 typically SCIA and Chimère resolution
comparable Extended NO2 plumes compare well
Details show differences - Seasonality
(winter Chimère higher) - Individual days
- Distribution - Amount of detail
Write a Comment
User Comments (0)
About PowerShow.com