Title: Simulation of Reforming Process
1Universidade da Madeira
Theory and modelling of plasma-cathode
interaction in HID lamps a review
M. S. Benilov Departamento de FÃsica,
Universidade da Madeira, Portugal Talk to be
delivered at the Model Inventory COST 529
workshop Funchal, April 13, 2005 Acknowledgement
s M. D. Cunha, G. V. Naidis,
N. A. Almeida, M. Carpaij...
Departamento de FÃsica
2Contents of the talk
- Introduction
- The model of non-linear surface heating
- - Solution on the plasma side
- - Solution inside the cathode body
- Comparison with the experimental data
- General features of the solution
- - Diffuse mode
- - Axially symmetric spot modes
- - 3D spot modes
- Stability of the diffuse mode
- Effect of metal halides
- - Variation of properties of the
near-cathode plasma layer - - Variation of the work function of the
cathode surface
3Cathodes of arc discharges diffuse and spot modes
The current is distributed over the front surface
of the cathode in a more or less uniform way the
diffuse mode.
The current is localized in a region occupying a
small fraction of the surface (cathode spot) a
spot mode.
- Cathode of an arc discharge in argon. W, R 0.75
mm, p 4.5 bar, I 2.5 A. Courtesy of D.
Nandelstädt, J. Luhmann, and J. Mentel.
4History
- Multiple modes of current transfer to hot arc
cathodes were first observed in 1951 (W. Thouret,
W. Weizel, and P. Günther) and have been under
the active theoretical investigation ever since. - A self-consistent and universally recognized
theory started to emerge 40 years later, in the
1990s. - What are reasons of this lag?
- - It was realized relatively late that this
is a self-organization problem. - - Measurements are difficult. Reliable data
on the near-cathode voltage drop started to
appear only in 1998. Reliable experimental data,
referring to integral characteristics, allow more
than one theoretical interpretation (at least,
some people think so). - Theoretical vs. applied physics approach the
theory which is generally recognized by now has
been developed on a theoretical-physics basis.
5Theoretical vs. applied physics approach
- A model should be based on fundamental physical
principles and not rely on empirical parameters
and/or arbitrary theoretical suppositions such as
a "principle" of minimum voltage. - All simplifications must be based on estimates.
- You cannot drop a term from equations just
because you have not enough information or
because it complicates a solution. - If the model neglects important effects or is
inconsistent with fundamental physical
principles, it is a bad model - even if it generates beautiful pictures
adored by the management and/or agrees with the
experimental data. - There has been a huge number of models violating
these principles. Nearly all of them have been
forgotten by now.
6Structure of the near-cathode plasma region
7Why are models without the sheath inconsistent?
- Some authors disregard the near-cathode
space-charge sheath E. Fischer (1987), Flesch
and Neiger (1998, ....) - A solution without a sheath does not satisfy
boundary conditions for ni ,ne on the cathode
surface, which are governed by different
processes - Without a sheath, ni ne in the whole plasma
region right up the cathode surface. - A solution without a sheath is physically
meaningless the total electric current is
directed from the cathode into the plasma
Flux of plasma electrons from the quasi-neutral
plasma to the cathode Flux of ions
8The model of non-linear surface heating
BULK PLASMA
power input
electrons
NEAR-CATHODE LAYER
ions, plasma electrons
CATHODE BODY
- There is a considerable voltage drop in a thin
near-cathode layer - A considerable power is deposited in the
near-cathode layer - Part of this power is brought to the cathode
surface by the ions and plasma electrons while
the rest is taken away into the bulk plasma by
the electrons - The energy flux to the cathode surface is
generated in a thin near-cathode plasma layer
which is independent of the bulk plasma - The plasma-cathode interaction is independent of
the bulk plasma and may be modelled independently
The model of nonlinear surface heating
9The model of non-linear surface heating
A complete solution can be found in two steps
- Solution on the plasma side the 1D problem
describing the current transfer across the
near-cathode plasma layer is solved and all
parameters of the layer are determined as
functions of Tw and U. In particular, functions q
q(Tw,U) and j j(Tw,U) are found. - Solution inside the cathode the equation of
thermal conduction is solved with the boundary
condition q q(Tw,U).
The model is self-consistent What is specified
is not a distribution of the energy flux from the
plasma over the surface but rather a dependence
of the energy flux density on the local surface
temperature, this temperature being unknown
apriori! The model should have multiple
solutions, describing different modes of current
transfer from the plasma to the cathode.
10The model of non-linear surface heating
- The model was apparently first suggested more
than 40 years ago (W. L. Bade and J. M. Yos,
Technical Report of Avco Corporation, USA, 1963)
and was apparently re-discovered more than once.
However, in general this model was half-forgotten
and advances in theoretical description of the
plasma-cathode interaction for many years have
been limited. - A self-consistent and universally recognized
theory based on this model started to emerge only
in the 1990s. - Developments on the theoretical side
- - A modern theoretical description of the
near-cathode plasma layer was developed (M. S.
Benilov and A. Marotta 1995, R. Rethfeld et al
1996). - - It was shown that the model gives multiple
solutions describing different modes of current
transfer from the plasma to the cathode (M. S.
Benilov 1998). Switching of mode mechanisms by
hand became unnecessary. - Developments on the experimental side
- - Detailed electrical and thermal
measurements have been performed (J. Mentel et al
1998, ). Near-cathode voltages of up to 50V
were reported! - - Theoretical results predicted by the model
of non-linear surface heating have been confirmed.
11The model of non-linear surface heating
By now, this model has been successfully used by
many authors e.g.,
- - J. Wendelstorf 1999
- - S. Coulombe 2000
- - R. Bötticher and W. Bötticher 2000, 2001a,
2001b - T. Krücken 2001
- W. Graser 2001
- M. S. Benilov and M. D. Cunha 2002, 2003a, 2003b
- R. Bötticher, W. Graser, and A. Kloss 2004 (a
reproducible diffuse-spot transition was achieved
in the experiment and was quantitatively
correctly described by 3D non-stationary
simulations) - L. Dabringhausen 2004 (simulations of
steady-state 3D spots) - S. Lichtenberg, L. Dabringhausen, J. Mentel, and
P. Awakowicz 2004 (simulations of steady-state 3D
spots) - M. S. Benilov, M. D. Cunha, and G. V. Naidis 2004
(a multiple-species MH plasma) - M. Galvez 2004 (collisional sheath simulations
of the whole lamp) - K. C. Paul et al 2004 (collisional sheath
simulations of the whole lamp) - - G. M. J. F. Luijks, S. Nijdam, and H. A. v.
Esveld 2004.
12Solution on the plasma side
- The ionization layer a hydrodynamics description
- Equations
- Equation of motion of the ion fluid accounting
for ion inertia, ion pressure gradient, electric
field force, friction force due to elastic
collisions of ions with neutral particles,
friction force due to ionization of neutral
particles. - Equation of balance of the electron energy in the
ionization layer. - Boundary conditions
- On the plasma side of the ionization layer
ionization equilibrium. - On the edge of the space-charge sheath the Bohm
criterion. - A complete solution is still missing. Frank
Scharfs talk deals with this problem. - The space-charge sheath a kinetic description
- Equations
- A kinetic equation describing the motion of ions,
- The Poisson equation.
- Boundary condition at the sheath edge the Bohm
criterion
13Solution on the plasma side
Density of the energy flux from the plasma to the
cathode surface vs. the surface temperature.
Tungsten cathode in the argon plasma, p 1 atm.
From M. S. Benilov and M. D. Cunha 2002.
14Solution on the plasma side
- In the range Ult 20V, the dependence of qp on Tw
for fixed U includes a growing and falling
sections separated by a maximum
Reason of the non-monotony is overcoming of
the increase of combined ion and plasma electron
heating by an increase of thermionic cooling
which occurs when the plasma approaches full
ionization
- At higher U, the dependence changes a plateau
appears, which subsequently gives way to two
maxima and a minimum
Reasons of the maxima are, respectively,
non-monotony of the dependence of the ion current
on the electron temperature which is caused by a
deviation of the ion current from the diffusion
value and rapid increase of the plasma electron
heating which is subsequently overcome by
thermionic cooling.
15Solution inside the cathode body
- Inside the cathode body the thermal conduction
equation - Ñ (k ÑT) 0
- At the cathode surface density of the energy
flux from the plasma (or to the cold gas) is a
given function of the local surface temperature
and of the near-electrode voltage drop - q q(Tw,U)
- Methods of solution
- Home-made codes
- ANSYS
- Femlab
16Comparison with the experimental data
Current-voltage characteristics of the diffuse
mode on a tungsten cathode in the argon plasma. p
2.6 atm. Lines modelling. Points experiment.
1, ? h 24 mm, R 0.75 mm. 2, ? h 25
mm, R 0.5 mm. 3, ? h 15 mm, R 0.3 mm.
17Comparison with the experimental data
Temperature in the center of a tungsten cathode
operating in the diffuse mode in the argon
plasma. R 0.75 mm. p 2.6 atm. Lines
modelling. Points experiment. ? h 24
mm. ? h 29 mm. ? h 19 mm.
18Comparison with the experimental data
Power removed by heat conduction and irradiated
from the cathode surface in the diffuse mode on a
tungsten cathode in the argon plasma. R 0.5 mm.
p 2.6 atm. Lines modelling. Points
experiment. 1, 2 Power removed by heat
conduction. 3, 4 Power irradiated from the
cathode surface. 1, 3, ?, h 30 mm. 2,
4, ?, ? h 20 mm.
19Comparison with the experimental data
D. Nandelsätdt, M. Redwitz, L. Dabringhausen, J.
Luhmann, S. Lichtenberg, and J. Mentel 2002,
Fig. 12 Comparison of the total power losses
obtained by pyrometric measurements (points) with
the model by Benilov and Cunha (lines). p 2.6
atm argon pure tungsten cathodes, h 20 mm. 1,
? R 0.3 mm. 2, ? R 0.5 mm. 3, ? R
0.75 mm (the cathode operated in a spot mode!)
20Comparison with the experimental data
D. Nandelsätdt, M. Redwitz, L. Dabringhausen,
J. Luhmann, S. Lichtenberg, and J. Mentel 2002,
Fig. 13 Comparison of the measured cathode fall
with the models by several authors. p 10 atm
xenon pure tungsten cathode, R 0.6 mm, h 14
mm.
21General pattern of various modes
Current-voltage characteristics of different
modes of current transfer. W, R 2 mm, h 10
mm, Ar, 1 bar
22General features of the solution the diffuse mode
a
b
c
d
e
W, R 2 mm, h 10 mm, Ar, 1 bar
23General features of the solution 1st 2D spot mode
a
b
c
d
W, R 2 mm, h 10 mm, Ar, 1 bar
24General features of the solution 3D spot modes
a
b
c
d
W, R 2 mm, h 10 mm, Ar, 1 bar
25General features of the solution 3D spot modes
a
b
c
d
W, R 2 mm, h 10 mm, Ar, 1 bar
26Stability limit of the diffuse mode
- The first bifurcation point represents the limit
of stability of the diffuse mode the diffuse
mode is stable at IgtIbif and unstable at IgtIbif . - This point can be calculated in a relatively
simple way.
W, R 2 mm, h 10 mm Ar, 1 bar
Limit of stability
27Stability limit of the diffuse mode
- The stability limit decreases rapidly with a
decrease of the cathode radius. The same trend is
observed in the experiment (Neumann 1987).
Current-voltage characteristics of the diffuse
mode and limits of its stability. Tungsten
cathode. Argon plasma, p 1bar.
28Stability limit of the diffuse mode
- The stability limit decreases rapidly with an
increase of the cathode height. The same trend is
observed in the experiment (Neumann 1987).
Current-voltage characteristics of the diffuse
mode and limits of its stability. Tungsten
cathode. Argon plasma, p 1bar.
29Stability limit of the diffuse mode
- A small decrease of the work function originates
a strong decrease of the stability limit. The
same trend is observed in the experiment (Neumann
1987).
R 1 mm, h 14 mm
Current-voltage characteristics of the diffuse
mode and limits of its stability. Tungsten
cathode. Argon plasma, p 1bar.
30Stability limit of the diffuse mode
- An increase of the argon pressure result in an
increase of the stability limit. The same trend
is observed in the experiment (Lichtenberg et al
2002). - A change from argon to xenon and from xenon to
mercury results in an increase of the stability
limit. The latter is observed in the experiment
(Thouret 1951).
Current-voltage character- istics of the diffuse
mode and limits of its stability. Tungsten
cathode. R 1 mm, h 14 mm.
31Metal halide plasmas
- The presence of metal halides in the plasma
- affects the current transfer in two ways
- Through variation of properties of the
near-cathode plasma layer due to the presence of
metal halides in the gas phase - Through variation of the work function of the
cathode surface due to formation on the surface
of an alkali metal monolayer
32Near-cathode layer in multi-species plasmas
- The equations are reformulated in terms of
effective coefficients, the most important of
these coefficients being the effective rate
constant of ionization of a neutral particle by
electron impact and the effective mean cross
section for momentum transfer in elastic
collisions between a positive ion and a neutral
particle. - The effective coefficients are calculated by
means of averaging the corresponding individual
coefficients over plasma partial composition
evaluated at the plasma edge of the ionization
layer. - Partial composition of a plasma at the edge of
the ionization layer is determined from equations
of local balance of production and loss of every
plasma species in volume reactions for given
elementary composition of the mixture and given
values of the heavy-particle temperature Th,
electron temperature Te, and gas pressure p. - There is no detailed balancing between direct and
reverse reactions at the edge of the ionization
layer, therefore the calculation requires, in
addition to thermodynamic data, also kinetic data
(in contrast to the case of an LTE plasma,
ThTe).
33MH plasma composition
- The plasma-producing gas in metal halide (MH)
lamps represents a mixture of molecular and
atomic species composed of Hg and (some of) the
following elements Na, Tl, Dy, Sc, Cs, I, and
Ar. - The main neutral gas-phase species in MH lamps
are Hg, Na, Tl, Cs, Dy, Sc, I, NaI, TlI, CsI,
DyI, DyI2, DyI3, ScI, ScI2, ScI3. - Ion species produced in ionization of atoms are
Hg, Na, Tl, Dy, Sc, Cs, I. As the
ionization potentials of metal iodides are
substantially higher than those of corresponding
metal atoms (e.g., 5.14 eV for Na and 7.54 eV for
NaI, 6.11 eV for Tl and 8.47 eV for TlI, 3.89 eV
for Cs and 7.25 eV for CsI), the presence of
molecular ions is neglected. - Attachment of electrons to atoms I results in
appearance of ions I-. - Thus, the present model takes into account the
following species Hg, Na, Tl, Cs, Dy, Sc, I,
NaI, TlI, CsI, DyI, DyI2, DyI3, ScI, ScI2, ScI3,
Hg, Na, Tl, Dy, Sc, Cs, I, I-, e.
34MH plasma diffuse discharge
- An addition of metal halides to the mercury
plasma results in a small decrease of the cathode
surface temperature.
Maximal temperature of the cathode surface.
h14,5 mm, R1mm, p 5 bar. MH plasma
HgNaTlI0.890.0050.050.055.
35MH plasma diffuse discharge
- The near-cathode voltage drop in the MH plasma,
UMH, is slightly lower than UHg, the latter being
in turn slightly lower than UAr. - The stability limit in Hg is higher than that in
Ar, in accord with a general tendency (lower
near-cathode voltages correspond to a higher
stability limit). - An addition of metal halides results in a
considerable expansion of the range of stability
of the diffuse mode. The reason decrease of the
derivative ?q/?Tw.
Current-voltage characteristics and the stability
limit. h14,5 mm, R1mm, p 5 bar. MH plasma
HgNaTlI0.890.0050.050.055.
36Variation of the work function
- Even smalls amounts of the alkali vapor in the
plasma, of the order of 1 and less, can produce
a significant effect on the work function. - The decrease of the work function produced by
adding Cs to the mercury plasma is stronger than
that produced by adding Na and comes into play at
higher values of the surface temperature.
Work function of tungsten covered by a monolayer
of Na or Cs in Na-Hg or Cs-Hg plasmas. p5bar.
Calculation with the use of the data from J.
Almanstötter, B. Eberhard, K. Günther, and T.
Hartmann 2002 and Welton 2002
37Na-Hg plasma effect of variation of work function
- Formation of the sodium monolayer affects the
diffuse mode of current transfer in the same
direction that the presence of metal atoms in the
gas phase does Tw and U decrease, range of
stability of the diffuse mode expands. - Formation of the sodium monolayer produces only a
moderate effect.
Lines maximal temperature of the cathode surface
and current- voltage characteristics. Diffuse
mode on a W cathode, p5bar. Points stability
limit of the diffuse mode with ZNa0.08 on a
cathode covered by a monolayer of Na (the full
circle) in the Na-Hg plasma with ZNa0.08 on a
clean cathode (the open circle) in the Hg plasma
(the square).
38Cs-Hg plasma effect of variation of work function
- Formation of the cesium monolayer changes the
plasma-cathode interaction dramatically the
temperature of the cathode surface decreases very
strongly, the diffuse-mode current-voltage
characteristic becomes N-S-shaped. - The question of stability of the diffuse mode in
the Cs-Hg plasma requires an additional
mathematical treatment.
Maximal temperature of the cathode surface and
current-voltage characteristics. Diffuse mode of
discharge on a tungsten cathode.
39Conclusions
- Considerable advances in understanding the
interaction of high-pressure plasmas with
thermionic cathodes have been achieved during the
last decade. - A self-consistent and universally accepted theory
and simulation methods of plasma-cathode
interaction have developed and validated by a
comparison with the experiment. - The most important features of the modern
simulation approach are
- The approach is based on first physical
principles and does not involve adjustable or
empiric parameters - Different modes of current transfer and
transitions between them can be simulated in a
completely self-consistent way - Possibility of modelling of complex 3D
geometries, also with account of non-stationary
effects - Possibility of modelling of complex mixtures,
such as MH plasmas.