Bayesian Methods in Econometrics - PowerPoint PPT Presentation

1 / 96
About This Presentation
Title:

Bayesian Methods in Econometrics

Description:

'What is true is that if we use this procedure to construct an interval in ... One way to find this posterior distribution is by brute force (integrating and dividing) ... – PowerPoint PPT presentation

Number of Views:95
Avg rating:3.0/5.0
Slides: 97
Provided by: JamesHa155
Category:

less

Transcript and Presenter's Notes

Title: Bayesian Methods in Econometrics


1
Bayesian Methods in Econometrics
  • James D. Hamilton
  • University of California, San Diego

2
Bayesian Econometrics
  • A. Introduction

3
(No Transcript)
4
(No Transcript)
5
  • Classical statistician says
  • No, no, no! ? is the true value. It either
    equals 5 or it doesnt. There is no probability
    statement about ?.
  • What is true is that if we use this
    procedure to construct an interval in thousands
    of different samples, in 95 of those samples,
    our interval will contain the true ?.

6
  • Suppose we ask the classical statistician
  • Do you know the true ??
  • No.
  • Choose between these options. Option A I
    give you 5 now. Option B I give you 10 if the
    true ? is in the interval between 2.0 and 3.5.
  • Ill take the 5, thank you.

7
  • How about these? Option A I give you 5 now.
    Option B I give you 10 if the true ? is
    between -5.0 and 10.7.
  • OK, Ill take option B.

8
  • Option A I generate a uniform number between
    0 and 1. If the number is less than ?, I give
    you 5. Option B I give you 5 if the true ? is
    in the interval (2.0,4.0). The value of ? is
    0.2
  • Option B.
  • How about if ? 0.8?
  • Option A.

9
(No Transcript)
10
(No Transcript)
11
(No Transcript)
12
(No Transcript)
13
(No Transcript)
14
(No Transcript)
15
(No Transcript)
16
  • One way to find this posterior distribution is
    by brute force (integrating and dividing).
  • An easier way to come up with the identical
    answer is to factor the joint density into a
    component that depends on ? and a component that
    does not depend on ?

17
(No Transcript)
18
(No Transcript)
19
(No Transcript)
20
(No Transcript)
21
(No Transcript)
22
(No Transcript)
23
(No Transcript)
24
(No Transcript)
25
(No Transcript)
26
(No Transcript)
27
(No Transcript)
28
(No Transcript)
29
(No Transcript)
30
I. Bayesian econometrics
  • Introduction
  • Bayesian inference in the univariate regression
    model

31
(No Transcript)
32
(No Transcript)
33
(No Transcript)
34
(No Transcript)
35
(No Transcript)
36
(No Transcript)
37
(No Transcript)
38
(No Transcript)
39
(No Transcript)
40
(No Transcript)
41
(No Transcript)
42
(No Transcript)
43
(No Transcript)
44
(No Transcript)
45
(No Transcript)
46
(No Transcript)
47
(No Transcript)
48
(No Transcript)
49
(No Transcript)
50
(No Transcript)
51
(No Transcript)
52
  • So what priors would we believe?
  • Fama stock prices are random walk
  • Hall consumption is random walk
  • Mankiw marginal tax rates are random walk

53
(No Transcript)
54
(No Transcript)
55
(No Transcript)
56
I. Bayesian econometrics
  • Introduction
  • Bayesian inference in the univariate regression
    model
  • Numerical Bayesian methods
  • 1. Importance sampling

57
(No Transcript)
58
(No Transcript)
59
(No Transcript)
60
(No Transcript)
61
(No Transcript)
62
(No Transcript)
63
(No Transcript)
64
(No Transcript)
65
(No Transcript)
66
(No Transcript)
67
(No Transcript)
68
(No Transcript)
69
(No Transcript)
70
I. Bayesian econometrics
  • Introduction
  • Bayesian inference in the univariate regression
    model
  • Some general issues in Bayesian inference
  • Numerical Bayesian methods
  • 1. Importance sampling
  • 2. The Gibbs sampler

71
(No Transcript)
72
(No Transcript)
73
(No Transcript)
74
(No Transcript)
75
(No Transcript)
76
(No Transcript)
77
(No Transcript)
78
(No Transcript)
79
(No Transcript)
80
I. Bayesian econometrics
  • Introduction
  • Bayesian inference in the univariate regression
    model
  • Numerical Bayesian methods
  • 1. Importance sampling
  • 2. The Gibbs sampler
  • 3. Metropolis-Hastings algorithm

81
(No Transcript)
82
(No Transcript)
83
(No Transcript)
84
(No Transcript)
85
(No Transcript)
86
(No Transcript)
87
(No Transcript)
88
(No Transcript)
89
(No Transcript)
90
(No Transcript)
91
(No Transcript)
92
(No Transcript)
93
(No Transcript)
94
(No Transcript)
95
(No Transcript)
96
(No Transcript)
Write a Comment
User Comments (0)
About PowerShow.com