Title: System schemata
1Chapter 5
- System schemata
- and Place Invariants
2reminder the biscuit vending machine
- two kinds of biscuits
- and ?
E
H
? ?
5
A
. a
y,z
outbox
C
d
2
signal
B
y,z
y
xgt 2
b
c
remove biscuits
no signal
G F
slot is free
D
coin back
b
coin store
3The empty can return machine
interpret the symbols differently empty can
1 coins
E
H
? ?
5
A
. a
y,z
outbox
C
d
2
signal
B
y,z
y
xgt 2
b
c
remove biscuits
you get 2 Euros for one empty can!
no signal
G F
slot is free
D
coin back
b
coin store
4What is the net really?
- a model of a biscuit vending machine?
- a model of a can return machine?
- it is a schema with symbols that deserve
interpretation
E
H
? ?
5
A
. a
y,z
outbox
C
d
2
signal
B
y,z
y
xgt 2
b
c
remove biscuits
no signal
G F
slot is free
D
coin back
b
coin store
5many different interpretations
- you may interpret the net as a biscuit vending
machine - you may interpret the net as a can return machine
- you may interpret the schema in different ways
E
H
? ?
5
A
. a
y,z
outbox
C
d
2
signal
B
y,z
y
xgt 2
b
c
remove biscuits
no signal
G F
slot is free
D
coin back
b
coin store
6We can analyze the schema!
- M0(A) M0(D) M0(H) 6
- ?( 1 lt M0(A) M0(D) M0(H) )
in ? in ?
E
H
? ?
5
A
. a
y,z
outbox
C
d
2
signal
B
y,z
y
xgt 2
b
c
remove biscuits
no signal
G F
slot is free
D
coin back
b
coin store
7marking M1
- M1(A) M1(D) M1(H) 6
- ?( 1 lt M1(A) M1(D) M1(H) )
E
H
? ?
5
A
. a
y,z
outbox
C
d
2
signal
B
y,z
y
1
xgt 2
b
c
remove biscuits
no signal
G F
slot is free
D
coin back
b
coin store
8some properties hold at some markings
- M (A) M(D) M(H) 6
- holds for M M0 and M M1
- but not for M M3
E
H
? ?
5
A
. a
y,z
outbox
C
d
2
signal
B
y,z
y
xgt 2
b
c
remove biscuits
no signal
G F
slot is free
D
coin back
b
coin store
9some properties hold at all reachable markings
A D E 2 holds in the schema is a valid
equation
- M (A) M(D) M(E) 2
- holds for all reachable M
E
H
? ?
5
A
. a
y,z
outbox
C
d
2
signal
B
y,z
y
xgt 2
b
c
remove biscuits
no signal
G F
slot is free
D
coin back
b
coin store
10valid equations
H 2G 2F 7 H - 2B 2F 5
cont(E) 2F 5 H - 2F cont(E) 2B
E
H
? ?
5
A
. a
y,z
outbox
C
d
2
signal
B
y,z
y
xgt 2
b
c
remove biscuits
no signal
G F
slot is free
D
coin back
b
coin store
11Equation at a branching transition
f(A) g(A) B C f(u), f(v), g(u),
g(v)
12Equation at a branching transition
f(A) g(A) B C f(u), f(v), g(u),
g(v)
13Equation at a branching place
A f-1(B) g-1(C) u,v
14Equation at a loop
A f(A) u,u
15Equations of the philosophers schema
A C a, b, c B l(C) r(C) a, b,
c l(A) r(A) B a, b, c
16Matrix and place invariant of a trans.
f(A) g(A) B C f(u), f(v), g(u),
g(v)
17Matrix and place invariant of two trans.
A f-1(B) g-1(C) u,v
18Matrix and place invariant of a loop
A f(A) u,u
19... of the philosophers schema
A C a, b, c B l(C) r(C) a, b,
c l(A) r(A) B a, b, c
20End of Chapter 5
- System schemas
- and Place Invariants
214 th Advanced Course on Petri Nets The end of
High Level Petri Nets
- Wolfgang Reisig
- Humboldt-Universität zu Berlin
thank you very much
22(No Transcript)
23(No Transcript)
24(No Transcript)
25(No Transcript)
26The philosophers Schema
27marking M1
- 1st case For each arc (p,t) holds pt??.
- let M enable t. Then for each place p
- M(p) M(p) pt tp
- M0 ?? M1 with M1(D) , M1(A) 1
E
H
? ?
5
A
. a
y,z
outbox
C
d
signal
B
y,z
y
1
b
c
remove biscuits
no signal
G F
slot is free
D
coin back
b
coin store
28marking M2
- M1 enables b with valuation x 5
- but not with x 4
- M1 ????? M2
b, x 5
? ?
4
y,z
C
d
B
y,z
y
?
b
c
G F
D
b
1
29? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?
? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? M?
M M? ? ? def ? ? ? ? ?? ? ? ? ? ? ? ???????? ?
???????? ? ? ???????? ? ???????? ? ? ? ? ?
? ? ? ? ? ? ? ? ? ? ? ??? ? ? ? ? ? ? ? ??
WFv(A) SFv(A) ??Nexta?vars? var?var?var helveti
ca 24
30MathB ? ? ? ? ? ? ? ? MathC ? ? ? ? ? ? ? ? ? ?
? ? ? Math1 ? ? ? ? ? ? ? Math4 ?? ? ? ?
???????? ? ???????? ? ? ???????? ? ????????
? Math5 ? ? ? ? ? Symbol ? ? ? ? ? ? ? ?
??? ?? ? ? ? ? ? ? ? . ? ? ?
? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? .
?? ? def M? M M? WFv(A) SFv(A) ??Nexta?vars?
helvetica 24