Pauli and the Elements - PowerPoint PPT Presentation

1 / 22
About This Presentation
Title:

Pauli and the Elements

Description:

energy levels in the valence band (c.f. partially full LT). Electrons can ... between the valence. and conduction bands. In a semiconductor, the valence band is ... – PowerPoint PPT presentation

Number of Views:108
Avg rating:3.0/5.0
Slides: 23
Provided by: edwar6
Category:

less

Transcript and Presenter's Notes

Title: Pauli and the Elements


1
Lecture 17
  • Pauli and the Elements

2
Periodic Table by Mendeleev
Properties of the elements repeat periodically
as the atomic number is increased, but why?
3
Zeeman Effect (1894)
  • Spectral lines are split in a magnetic field
    (e.g., in a sunspot)
  • Could be explained in terms of angular momentum
    of electron around the nucleus
  • This is related to the existence of the quantum
    numberm. Recall when l 1, m can take the
    values -1, 0, 1

4
Anomalous Zeeman Effect (1897)
  • Too many lines were observed in some cases
  • Explanation by Goudsmit and Uhlenbeck electron
    is also spinning on its axis

5
Stern-Gerlach Experiment (1922)
  • A beam of silver atoms split into two directions
    when passed through a magnetic field
  • Shows that electrons can spin in only two
    directions in space (since silver is made up of
    an odd number of electrons)

6
What We Know About Electron Spin Today
  • Can only spin in two directions either spin
    up or spin down
  • Spin quantum number takes value 1/2
  • Takes a rotation of 720 to complete one round!

7
Bosons and Fermions
  • Bosons are particles with integer spins
  • e.g., photons (spin 1)
  • Fermions are particles with half-integer spins
  • e.g., electrons, protons, neutrons, neutrinos ...
  • Ordinary matter are made out of fermions, while
    radiation is made out of bosons

8
The Pauli Exclusion Principle (PEP)
  • Two or more fermions cannot be in the same
    quantum state (i.e., have the same quantum
    numbers)
  • Does not apply to bosons

Wolfgang Pauli (1900-1958)
9
The Difference Between Bosons and Fermions
10
Consequences of the PEP
  • Existence of atoms and molecules
  • Existence of white dwarfs and neutron stars

It is the fact that electrons cannot all get
on top of each other that makes tables and
everything else solid. Richard
Feynman
11
Quantum Numbers of an electron in an atom
12
Energy Levels of an Atom
13
Hydrogen Atom
14
Hydrogen Atom (contd)
  • Electron can either be spin up or down
  • Two hydrogen atoms can combine to give a hydrogen
    molecule H2 the two electrons have opposite
    spins
  • By PEP, three hydrogen atoms cannotcombine
    together to give H3

15
Hydrogen Molecule Orbital Diagram
16
Helium Atom
  • The two electrons fill the 1s state, with
    opposite spins
  • By PEP, there is no more room for other
    electrons in the 1s state forms a closed shell
  • Makes helium chemically inert
  • Similar situation for the other inert noble gases

17
Lithium Atom
  • First two electrons fill the 1s state, and form
    a closed shell
  • Third electron must go to the next level 2s
  • Thus, similar chemical properties as hydrogen

18
Oxygen Atom (Z8)
  • 1s and 2s shells are closed four remaining
    electrons in 2p state
  • There is room for two more electrons in 2p state,
    e.g., from two hydrogen atoms
  • That is why we have water H2O

19
Water Molecule Orbital Diagram
Hydrogen atoms join up with the 2px and 2py states
20
Sodium Atoms Orbital Diagram
  • A sodium atom in the groundstate has a partially
    filled 3s state and an empty 3p state
  • A collection of sodium atomswould have
    overlapping 3p states
  • Electrons in the 3s state canjump to the 3p
    state andhence move between atoms

21
Band Theory QM explains properties of
conductors, semiconductors and insulators
Conductor
Semiconductor
Insulator
22
Band Theory (contd)
  • In a metal, there are many unfilled energy
    levels in the valence band (c.f. partially full
    LT). Electrons can easily move between the
    valence and conduction bands
  • In a semiconductor, the valence band is full
    (c.f. completely full LT). Only a few electrons
    can jump to the conduction band
  • In an insulator, the energy gap between the bands
    is too large for electrons to jump the gap
Write a Comment
User Comments (0)
About PowerShow.com