Nanoscale Analytics - PowerPoint PPT Presentation

1 / 81
About This Presentation
Title:

Nanoscale Analytics

Description:

Nanoscale Analytics – PowerPoint PPT presentation

Number of Views:80
Avg rating:3.0/5.0
Slides: 82
Provided by: kern3
Category:

less

Transcript and Presenter's Notes

Title: Nanoscale Analytics


1
Nanoscale Analytics
  • Optical Spectroscopy
  • Nearfield Microscopy

2
Outline
  • Motivation
  • Survey Material information vs. Spatial
    resolution
  • The optical resolution problem
  • Optical Response of Matter
  • Energy levels in matter
  • Dielectric function
  • Spectroscopy
  • Photons, energy scales, optical processes
  • Linear (one-photon)
  • Absorption, Fluorescence (PL), Raman
  • Non-linear (two or more photons)
  • SHG, Hyper-Raman, CARS
  • General Microscopy
  • Resolution
  • Challenges in nanoscale microscopy
  • Optical Nanoscale Microscopy
  • Farfield concepts
  • Confocal
  • 4p

3
Motivation
  • Optical structure analysisat the nanoscale

4
Chemical analysis techniques
5
The Abbe diffraction limit
(E. Abbe, Arch. Mikrosk. Anat. 1873, p413)
Spatial ResolutionWhen do you see two points as
separate? (The central question in all microscopy)
0l
0.5l
1.0l
Dx
l
Rayleigh criterion Dx gt l/2
(Lord Rayleigh, Phil. Mag. 54, 1896, p167)
6
Optical Response of Matter
  • Classical
  • Dielectric Function e(w) n2(w) Index of
    Refraction
  • Quantum Mechanical
  • Electron-photon interactions ?natom,nradHint
    natom,nrad? ? 0

7
Energy Levels of Matter
isolated atoms
molecules
nano crystals
crystals
8
One-Photon Absorption
9
Dielectric FunctionIndex of Refraction
  • Isolated oscillators (Gases)
  • Non-metallic solids, liquids
  • (high density,bound e- feelneighboring atoms)
  • Metals
  • free e-dominate bound e-

10
Spectroscopy
  • Learning about matterbyoptical interactions

11
Photons and Material Science
  • Photon(single quantum of the light field)
  • Energy (wavelength, frequency)
  • Direction (wavevector k)
  • Polarization (linear, circular)
  • Wavetrain(classical light beam, pulse)
  • Coherence
  • Poisson statistics
  • Phase
  • Amplitude/Intensity

Any property may be utilized for analytic
applications
Spectroscopy Energy
12
Optical Energy Scales
Room temperature
13
Optical Processes
  • Photon in Photon out
  • Scattering
  • Fluorescence
  • Stimulated emission
  • Photon in
  • Absorption
  • Photo-chemistry
  • Ionization
  • Photon out
  • Spontaneous emission
  • Recombination
  • Phosphorescence
  • Linear 1 photon Nonlinear 2, 3,
    photons

Franck-Condon Principle
14
Absorption
IR Absorption (intraband)
Vis Absorption (interband)
Transmission
S1
S1
n2 n1 n0
n2 n1 n0
S0
S0
hnabs
15
Fluorescence, Luminescence
Bandstructure(Silicon)
Molecular energy levels (Jablonski diagram)
S2
Internal conversion
conduction band
S1
Intersystem crossing
T1
hnabs1
hnabs2
hnfl
direct
indirect
hnabs
hnphosph
hnPL
hnphonon
hnPL
S0
hnabs
valence band
16
Raman scattering
Rayleigh Scattering (elastic)
naS nL
Stokes
anti-Stokes
naS nL nM
nS nL - nM
Nonresonant Raman Scattering (inelastic)
17
Complementary Methods
Absorption
Visible
IR
18
Complementary Methods
19
Spectroscopy Applications
  • Examples from bulk spectra

20
Molecular Vibrations in Chloroform (CHCl3)
Raman spectrum
3000 cm-1
0 cm-1
IR absorption
21
Fingerprinting Materials
Raman spectra in the region 100-1000 cm-1 of(a)
antimonite, (b) cobaltite, (c) chalcopyrite,
(d) enargite, (e) molybdenite, (f) kermesite
and (g) pyrite.
22
Semiconductor Bandstructure
Energy
Conduction band
Eg
Heavy holes
D
Valence band
Light holes
Split-off holes
23
CdSe Quantum Rods
absorption
PL
4.2 nm
20 nm
40 nm
(Hu et al., Science, 292, 2001)
24
Microscopy
  • Achieving spatial resolution
  • Some general aspects

25
Not to ConfuseResolution and Sensitivity
  • SensitivityThe capacity to respond to
    stimulation
  • Detecting signals fromone or two moleculesis no
    problem!(Even the naked human eye can do it)
  • ResolutionSeparating something into its
    constituent parts
  • We cannot tellhow many molecules do we see?

26
Definitions of Resolution(Imaging Theory)
Linear System
Object
Image
Point Spread Function PSF
Line Spread Function LSF
Edge Spread Function ESF
Modulation Transfer Function MTF
27
Resolution in the Eyes of an Engineer
  • Vary object spatial frequency
  • Fixed PSF
  • Linear system gives convolution image
  • Nonlinear systems improve resolution

28
Resolution Limit
  • Vary object spatial frequency
  • Fixed PSF
  • Linear system gives convolution image
  • Evaluate MTF

Resolution Limit
29
Noise Lowers Resolution
without
with
30
Nanoscale Microscopy
  • nm scale only a few atoms, small signals

Must overcome noise and parasitic signals!
31
Nanoscale Microscopy
  • Small signal extraction
  • Selective activation
  • Only in area of interest
  • Whenever possible Favorable!
  • Blocking/discriminatingparasitic signals

32
Optical Nanoscale Microscopy
  • Methods for optical lateral resolution

33
Optical Microscopy
  • Dimensionality of methods ? objects of interest
  • 1D vertical only interfaces, thin films,
    epilayerse.g. ellipsometry
  • 2D purely lateral columnse.g. conventional
    microscopy
  • 3D vertical and lateral dotse.g. confocal
    microscopy

34
Optical Nanoscale MicroscopyLight in/from Small
Dimensions
  • Ideas for confining light
  • Farfield exp(ikx)
  • Focal point engineering
  • Surface reflections
  • Evanescent light exp(-kx)
  • Total internal reflection
  • Surface plasmons
  • Nearfield 1/rn
  • Through small apertures
  • Field enhancing at small objects

How to confine a wave into a sub-wavelength
area-of-interest ???
35
Nano-Optical Microscopy Techniques
4pSTED ! lt 20nm
36
Confocal Microscope
  • Excitation pinhole
  • Detection pinhole
  • Imaged in the sample at the same focus
  • Hence
  • Con - focal

(Nikon, www.microscopyu.com)
37
Confocal Light Microscope
  • Advantages
  • Rejection of out-of-focus light high sensitivity
  • Depth resolution (true 3-Dim Imaging)
  • Spectroscopy possible
  • Disadvantages
  • Single channel detection
  • Image construction by scanning
  • Theoretical limits reached

Very mature technology
(Nikon, www.microscopyu.com)
38
4p Microscope
  • Conventional 2p
  • Illumination from one halfspace
  • Opaque transparent samples
  • 4p
  • Illumination from all directions
  • Only for transparent samples

Pioneered 1990iesS. W. Hell, MPI Göttingen,
Germany.
39
Scanning Near field Optical Microscope SNOM
  • History
  • Envisioned 1928 1956 Synge, Phil. Mag. 6,
    356, 1928J.A. O'Keefe, JOSA 46, 359 1956

40
SNOM
  • Realization
  • Microwaves 1972Ash, Nicholls, Nature 237
  • Visible 1984Pohl, Denk, Lanz, APL 44Lewis,
    Isaacson, Harootunian, Murray, Ultramicroscopy 13

tapered optical fiber
cut-off diameter
Al coating
aperture
near-field
41
SNOM Variants
42
SNOM Limits of Scaling Down
  • Energy balance
  • Reflection 2/3
  • Absorption 1/3
  • Throughput only 10-6 to 10-10(depending on
    aperture)

43
Alternative to AperturesLocalized Nearfield
Enhancement
  • single colloids clusters extended tips

44
Model Case Single Sphere
45
Model Case Single Sphere
  • Optimal enhancement
  • Material/wavelength matters
  • Best metals with little absorption
  • Diameter irrelevant
  • Other shapes 2 ? f gt0

46
Clusters Relation with SERS
  • Surface enhanced Raman scattering SERS
  • First observed 1974Fleischmann, Hendra,
    McQuillan, Chem. Phys. Lett. 26.
  • Molecules at rough metal surfaces
  • Stochastic hot spots at interparticle gaps
  • Enhancement of scattering cross sectionby
    103-106 (even 1014 reported)
  • Two main enhancements factors
  • Quasi-Electrostatic
  • Chemical

47
Field Enhancement-Confinement_at_AFM or STM tips
  • Aperture squeeze
  • Sharp tip enhance
  • Lightning rod effect
  • infinitesimal radius infinite fields, infinitely
    confined

Smaller radius ? lower fields
Smaller radius ? higher fields
48
Apertureles SNOM (aSNOM)
  • Excitation from above or below the sample
  • Opaque and transparent samples
  • Lateral resolution (extent) apex radius
  • Staticnearfield overwhelms parasitic radiation
  • Dynamictip-sample distance modulated
    demodulated detection

farfield
nearfield
49
aSNOM Variants
50
Spectro-Microscopy
51
Frontiers in Nano-Optics
  • Applications in Physics, Material
    Science, Chemistry, Biology, Medical Science,

52
Confocal PL partially ordered GaInP2
  • A,B,Csub-bandgap emission highly localized
    states(not actually resolved)
  • D bandgap excitons (long range order)

5x5 mm area
(S. Smith et al., APL 74, p706, 1999)
53
Confocal Raman Diamond films
  • Pixel-by-pixel analysis of full spectra for
    material science information
  • Raman peaks
  • FWHM amorphous material
  • Center tensile/compressivestress

(www.witec.de)
54
4p Microscope
55
Stimulated Emission Depletion (STED)
space
56
Saturated DepletionBreaks Diffraction Barrier
S.W. Hell (2003), Nature Biotechnol. 21,
1347. S.W. Hell (2004), Phys. Lett. A 326
140. S.W. Hell, M. Dyba, S. Jakobs (2004), Curr.
Opin. Neurobiol. 14, 599.
57
4p-STED Microscopy
Fluorescently tagged microtubuli with an axial
resolution of 50-70 nm
M. Dyba, S. Jakobs, S.W. Hell (2003), Nature
Biotechnol. 21, 1303.
58
4p Microscopy of Living Cells
  • Microtubulin fibers ofa mammal cell,
    dye-labelled
  • 15-times better resolution than confocal
  • Monolayer of dye molecules on coverslip imaged
    as 50 nm thick

(www.4pi.de)
59
4p Microscopy of Living Cells
  • Mitochondrial matrixof live yeast cell (green)
  • Cell wall counterstained white

(Egner, A., S. Jakobs and S. W. Hell (2002).
www.4pi.de)
60
SNOM Single Molecule Detection
Rhodamine 6G dye molecules
Confocal 1x1 mm
SNOM 1x1 mm
(www.witec.de)
61
SNOM Phase Mixtures
2-phase polymer mixture for LED applications
AFM Topography
SNOM Fluorescence
excitation l457nm, detection lgt490nm
(www.witec.de)
62
SNOM Human Chromosomes
Human Chromosomes in the meta phase
The chromosomes consists of two chromatides
(12),tied together at the cineotocher
(C). Helical DNA is visible in the dark areas
(H).
(www.witec.de)
63
(No Transcript)
64
(No Transcript)
65
(No Transcript)
66
Reminder Apertureless SNOM (aSNOM)
  • nearfield interaction
  • farfield detection
  • opaque and transparent samples
  • wavelength-independent resolution apex radius

67
aSNOM 3d Focus Characterization
Experimental
5 um
Simulated measurement
Simulation
z
x
5 um
Gaussian focus
68
aSNOM Resolution
Residue of latex evaporation mask
Confocal Au islands not resolved
aSNOM easily resolved
69
aSNOM Material Specificity
Visible
Infrared
Topography
Optical
(Taubner, Hillenbrand, Keilmann, J Microscopy,
210, 2003)
70
(No Transcript)
71
aSNOM Nano-Lithography
Influence of incident polarization
First results
(Bachelot et al., JAP, 94, 2003)
72
aSNOM Nano-Raman
Confocal
Topography
aSNOM
polarization dependent
  • depolarized nearfield
  • resolution 23nm

(Hartschuh et al., PRL, 90, 2003)
73
(No Transcript)
74
aSNOM CARS of DNA clusters
topography
1337 cm-1
1278 cm-1
1337 cm-1without tip
(Ichimura et al., APL, 84, 2004)
75
Vertical Excitation gt TipSample
EinEout
kin -kout
dipoles?
optical amplitude
topography
k
E
Au disks on glass
76
Horizontal Excitation gt Sample gt Tip
Eout
Ein
kin -kout
dipoles
optical amplitude
topography
k
E
Au disks on glass
quadrupoles
77
Application 1d Plasmons
nm
nm
78
Focussed Beamsin Angular Representation
Classically
Quantum mechanically
79
Loss of Nearfield Information
80
Nearfield Restauration
superlensing material
amplitude l10.85mm
phase l11.03mm
amplitude l9.25mm
81
aSNOM coupling forbidden light into propagating
modes
40nmAg
25nmAu
(Wurtz et al., Nano Lett., 3, 2003)
Write a Comment
User Comments (0)
About PowerShow.com