Title: Folie 1
1Thunder Lecture I ?????? ??????????Ingo
Rechenberg????????????? ??????10?14?(??)180020
00 ?????107 ???? 1.
??????? 2. ???????? Ingo
Rechenberg??????????????,?????????????????????????
,?????????????????????????????????????????????????
?Rechenberg?????????,??????????????,??????????????
??????????????,??????????????????????
CNS??
2Evolution Strategy
Natures way of optimization
Ingo Rechenberg
2
How Evolution Strategy works
Shanghai Institute for Advanced Studies
Technische Universität Berlin
3Search for a document
(Search)Strategies are of no use in an disordered
world
(Search)Strategies need a predictable order of
the world
4An optimization strategy
(the Evolution Strategy)
makes use of some order principles of the world
5An universal world order is
Causality
Weak Causality
Strong Causality
6Search area
Experimenter
Plumbing the depth
The search for the optimum
7Search area
Experimenter
Plumbing the depth
The search for the optimum
8(No Transcript)
9Strong Causality
Strategies need a predictable order of the world
10(No Transcript)
11Solve
when n1 to n6 are natural numbers
and you get famous !!!
12Edge was too small to note the proof
For m gt 2
Pierre de Fermats print of Diophants Arithmetica
13No Solution ! (Fermat, Wiles)
EULERs conjecture No solution !
14Euler has been mistaken
!
958004 2175194 4145604 4224814
(Frye, 1988)
!
275 845 1105 1335 1445
(Lander/Parkin, 1966)
15Minimize exactly
when n1 to n6 are natural numbers and you get
famous !!!
16Minimize exactly
when n1 to n5 are natural numbers
17Evolutionary Computation (1 , 4 (1 , 100) 200
-ES
676 1246 4566 8846 13276
(1346.00000000004163)6
18Weak Causality
Strategies are of no use in a disordered world
191. Global deterministic search
2. Global stochastic search
3. Local deterministic search
4. Local stochastic search
201. Global deterministic search
Systematic scanning of the variable space
212. Global stochastic search
To find the target with 95 probability
221. Global deterministic search
2. Global stochastic search
3. Local deterministic search
4. Local stochastic search
23Definition of a local convergence measure
The rate of progress
j
distance moved uphill
j
number of generations
Condition Strong Causality !!!
24d
Progress
d
Linearity radius
3. Local deterministic search
Walking following the steepest ascent
252. Offspring
Parent
1. Offspring
d
Linearity radius
4. Local stochastic search
Random drifting along the steepest ascent
n gtgt 1
26Plus-offspring
Center of gravity
Minus-offspring
Parent
Linearity radius
Determiation of the linear rate of progress
Statistical mean of the progress
27Center of gravity
s
s
s
n Dim.
2 Dim.
3 Dim.
282. Offspring
Parent
1. Offspring
d
Linearity radius
4. Local stochastic search
Random drifting along the steepest ascent
n gtgt 1
29(No Transcript)
30Gradient Strategie contra Evolution Strategy
For n gtgt 1
31Gradient Strategy
contra
Evolution Strategy
Linear local climbing theory within a strong
causal optimization landscape
32Algorithm of the (1 1) - ES
Arbitrarily large ?
33Where is the optimum ???
End of the linearity
Global stochastic search
Search for the maximum rate of progress
34Nonlinear models
Near to the optimum
Far from the optimum
35Two solutions for the (11)-ES
36DARWINs theory in maximal abstraction
More correct imitation of the Biological Evolution
37Basic-Algorithm of the (1, l ) Evolution
Strategie
38(No Transcript)
39The general idea (in 1 dimension)
Set of functions
The TAYLOR series expansion in the MACLAURIN form
!
All functions have the same form
40TAYLOR series expansion in n dimensions
(MACLAURIN series)
Transformation to the principle axes
41Tabel
of the progress coefficients
42r
43D
D
2
F
-
Central law of progress
44The Evolution Strategist
45(No Transcript)
46not so
but so
47Demonstration of the necessity of a step-size
regulation
48Definition of the success probability
The theory gives the result
49Step-size adaptation D using the success-rule
D ?
D ?
0.227
501 / 5
Development of the 1/5-Success-Rule
51We gt 1/5
We lt 1/5
Cosmic ray
Mutations
Biologically impossible
52Assessment of the climbing style
Climbing alone
Climbing in a group
53Duplicator
DNA
Mutation
cator
dupli
the
made
Has
Heredity of the mutability
Crucial point of the Evolution Strategy
54Algorithm of the (1, l ) Evolution Strategy
with MSC
55Fraidycat
Columbus
Amundsen
Hothead
Four mountaineers, four climbing styles
56Four moutaineers, four climbing styles
In a compact notation
Nested Evolution Strategy
57On the way to an evolution-strategic algebra
58On the way to an evolution-strategic algebra
,
m
,
l
)
(
- ES
1
1
59On the way to an evolution-strategic algebra
,
r
m
l
)
(
- ES
/
Example r 2
,
m
l
(
)
- ES
/
2
Only half of the parental information builds up
an offspring
60On the way to an evolution-strategic algebra
g
,
m
l
)
(
- ES
Example
4
(1 6)
(1 6)
(1 6)
(1 6)
(1 6)
61On the way to an evolution-strategic algebra
g
g
?
,
,
?
?
m
m
l
)
l
(
- ES
Biological equivalent to the strategy nesting
Family ? Genus Species Variety ( Individual
) ?
62Nested Evolution Strategy
?
g
g
,
,
?
m
?
m
l
)
l
(
- ES
Adaptation of the objektive variables xk
Adaptation of the mutation size d
to operate in the Evolution Window!
63MATLAB-program of the (1, l )-ES
64MATLAB-program of the (1, l )-ES
v100 de1 xeones(v,1)
65MATLAB-program of the (1, l )-ES
v100 de1 xeones(v,1) for
g11000 end
66MATLAB-program of the (1, l )-ES
v100 de1 xeones(v,1) for g11000
qb1e20 end
67MATLAB-program of the (1, l )-ES
v100 de1 xeones(v,1) for g11000
qb1e20 for k110 end end
68MATLAB-program of the (1, l )-ES
v100 de1 xeones(v,1) for g11000
qb1e20 for k110 if rand lt 0.5
dnde1.3 else dnde/1.3
end end end
69MATLAB-program of the (1, l )-ES
v100 de1 xeones(v,1) qesum(xe.2) for
g11000 qb10000 for k110 if
rand lt 0.5 dnde1.3 else dnde/1.3
end xnxednrandn(v,1)/sqrt(v)
end end
70MATLAB-programm of the (1, l )-ES
v100 de1 xeones(v,1) for g11000
qb1e20 for k110 if rand lt 0.5
dnde1.3 else dnde/1.3 end
xnxednrandn(v,1)/sqrt(v)
qnsum(xn.2) end end
71MATLAB-programm of the (1, l )-ES
v100 de1 xeones(v,1) for g11000
qb1e20 for k110 if rand lt 0.5
dnde1.3 else dnde/1.3 end
xnxednrandn(v,1)/sqrt(v)
qnsum(xn.2) if qn lt qb
qbqn dbdn xbxn end end
end
72MATLAB-programm of the (1, l )-ES
v100 de1 xeones(v,1) for g11000
qb1e20 for k110 if rand lt 0.5
dnde1.3 else dnde/1.3 end
xnxednrandn(v,1)/sqrt(v)
qnsum(xn.2) if qn lt qb
qbqn dbdn xbxn end end
qeqb dedb xexb end
73MATLAB-programm of the (1, l )-ES
v100 de1 xeones(v,1) for g11000
qb1e20 for k110 if rand lt 0.5
dnde1.3 else dnde/1.3 end
xnxednrandn(v,1)/sqrt(v)
qnsum(xn.2) if qn lt qb
qbqn dbdn xbxn end end
qeqb dedb xexb semilogy(g,qe,'b.')
hold on drawnow end
74Thank you for your attention