Folie 1 - PowerPoint PPT Presentation

1 / 74
About This Presentation
Title:

Folie 1

Description:

2. Global stochastic search. To find the target with 95% probability ... 4. Local stochastic search. Random drifting along the steepest ascent. n 1. 1. Offspring ... – PowerPoint PPT presentation

Number of Views:38
Avg rating:3.0/5.0
Slides: 75
Provided by: ogni
Category:
Tags: folie | stochastic

less

Transcript and Presenter's Notes

Title: Folie 1


1
Thunder Lecture I ?????? ??????????Ingo
Rechenberg????????????? ??????10?14?(??)180020
00 ?????107 ???? 1.
??????? 2. ???????? Ingo
Rechenberg??????????????,?????????????????????????
,?????????????????????????????????????????????????
?Rechenberg?????????,??????????????,??????????????
??????????????,??????????????????????

CNS??
2
Evolution Strategy
Natures way of optimization
Ingo Rechenberg
2
How Evolution Strategy works
Shanghai Institute for Advanced Studies
Technische Universität Berlin
3
Search for a document
(Search)Strategies are of no use in an disordered
world
(Search)Strategies need a predictable order of
the world
4
An optimization strategy
(the Evolution Strategy)
makes use of some order principles of the world
5
An universal world order is
Causality
Weak Causality
Strong Causality
6
Search area
Experimenter
Plumbing the depth
The search for the optimum
7
Search area
Experimenter
Plumbing the depth
The search for the optimum
8
(No Transcript)
9
Strong Causality
Strategies need a predictable order of the world
10
(No Transcript)
11
Solve
when n1 to n6 are natural numbers
and you get famous !!!
12
Edge was too small to note the proof
For m gt 2
Pierre de Fermats print of Diophants Arithmetica
13
No Solution ! (Fermat, Wiles)

EULERs conjecture No solution !

14
Euler has been mistaken
!
958004 2175194 4145604 4224814
(Frye, 1988)
!
275 845 1105 1335 1445
(Lander/Parkin, 1966)
15
Minimize exactly
when n1 to n6 are natural numbers and you get
famous !!!
16
Minimize exactly
when n1 to n5 are natural numbers
17
Evolutionary Computation (1 , 4 (1 , 100) 200
-ES
676 1246 4566 8846 13276
(1346.00000000004163)6
18
Weak Causality
Strategies are of no use in a disordered world
19
1. Global deterministic search
2. Global stochastic search
3. Local deterministic search
4. Local stochastic search
20
1. Global deterministic search
Systematic scanning of the variable space
21
2. Global stochastic search
To find the target with 95 probability
22
1. Global deterministic search
2. Global stochastic search
3. Local deterministic search
4. Local stochastic search
23
Definition of a local convergence measure
The rate of progress
j
distance moved uphill
j
number of generations
Condition Strong Causality !!!
24
d
Progress
d
Linearity radius
3. Local deterministic search
Walking following the steepest ascent
25
2. Offspring
Parent
1. Offspring
d
Linearity radius
4. Local stochastic search
Random drifting along the steepest ascent
n gtgt 1
26
Plus-offspring
Center of gravity
Minus-offspring
Parent
Linearity radius
Determiation of the linear rate of progress
Statistical mean of the progress
27
Center of gravity
s
s
s
n Dim.
2 Dim.
3 Dim.
28
2. Offspring
Parent
1. Offspring
d
Linearity radius
4. Local stochastic search
Random drifting along the steepest ascent
n gtgt 1
29
(No Transcript)
30
Gradient Strategie contra Evolution Strategy
For n gtgt 1
31
Gradient Strategy
contra
Evolution Strategy
Linear local climbing theory within a strong
causal optimization landscape
32
Algorithm of the (1 1) - ES

Arbitrarily large ?
33
Where is the optimum ???
End of the linearity
Global stochastic search
Search for the maximum rate of progress
34
Nonlinear models
Near to the optimum
Far from the optimum
35
Two solutions for the (11)-ES
36
DARWINs theory in maximal abstraction
More correct imitation of the Biological Evolution
37
Basic-Algorithm of the (1, l ) Evolution
Strategie
38
(No Transcript)
39
The general idea (in 1 dimension)
Set of functions
The TAYLOR series expansion in the MACLAURIN form
!
All functions have the same form
40
TAYLOR series expansion in n dimensions
(MACLAURIN series)
Transformation to the principle axes
41
Tabel
of the progress coefficients
42
r
43
D
D
2
F

-
Central law of progress
44
The Evolution Strategist
45
(No Transcript)
46
not so
but so
47
Demonstration of the necessity of a step-size
regulation
48
Definition of the success probability
The theory gives the result
49
Step-size adaptation D using the success-rule
D ?
D ?
0.227
50
1 / 5
Development of the 1/5-Success-Rule
51
We gt 1/5
We lt 1/5
Cosmic ray
Mutations
Biologically impossible
52
Assessment of the climbing style
Climbing alone
Climbing in a group
53
Duplicator
DNA
Mutation
cator
dupli
the
made
Has
Heredity of the mutability
Crucial point of the Evolution Strategy
54
Algorithm of the (1, l ) Evolution Strategy
with MSC
55
Fraidycat
Columbus
Amundsen
Hothead
Four mountaineers, four climbing styles
56
Four moutaineers, four climbing styles
In a compact notation
Nested Evolution Strategy
57
On the way to an evolution-strategic algebra
58
On the way to an evolution-strategic algebra
,
m
,
l
)
(
- ES
1

1

59
On the way to an evolution-strategic algebra
,
r
m
l
)
(
- ES
/

Example r 2
,
m
l
(
)
- ES

/
2
Only half of the parental information builds up
an offspring
60
On the way to an evolution-strategic algebra
g
,
m
l
)
(
- ES

Example
4
(1 6)
(1 6)
(1 6)
(1 6)
(1 6)

61
On the way to an evolution-strategic algebra
g
g
?
,
,
?

?
m
m
l

)
l
(
- ES


Biological equivalent to the strategy nesting
Family ? Genus Species Variety ( Individual
) ?
62
Nested Evolution Strategy
?
g
g
,
,
?

m
?
m
l

)
l
(
- ES


Adaptation of the objektive variables xk
Adaptation of the mutation size d
to operate in the Evolution Window!
63
MATLAB-program of the (1, l )-ES
64
MATLAB-program of the (1, l )-ES
v100 de1 xeones(v,1)
65
MATLAB-program of the (1, l )-ES
v100 de1 xeones(v,1) for
g11000 end
66
MATLAB-program of the (1, l )-ES
v100 de1 xeones(v,1) for g11000
qb1e20 end
67
MATLAB-program of the (1, l )-ES
v100 de1 xeones(v,1) for g11000
qb1e20 for k110 end end
68
MATLAB-program of the (1, l )-ES
v100 de1 xeones(v,1) for g11000
qb1e20 for k110 if rand lt 0.5
dnde1.3 else dnde/1.3
end end end
69
MATLAB-program of the (1, l )-ES
v100 de1 xeones(v,1) qesum(xe.2) for
g11000 qb10000 for k110 if
rand lt 0.5 dnde1.3 else dnde/1.3
end xnxednrandn(v,1)/sqrt(v)
end end
70
MATLAB-programm of the (1, l )-ES
v100 de1 xeones(v,1) for g11000
qb1e20 for k110 if rand lt 0.5
dnde1.3 else dnde/1.3 end
xnxednrandn(v,1)/sqrt(v)
qnsum(xn.2) end end
71
MATLAB-programm of the (1, l )-ES
v100 de1 xeones(v,1) for g11000
qb1e20 for k110 if rand lt 0.5
dnde1.3 else dnde/1.3 end
xnxednrandn(v,1)/sqrt(v)
qnsum(xn.2) if qn lt qb
qbqn dbdn xbxn end end
end
72
MATLAB-programm of the (1, l )-ES
v100 de1 xeones(v,1) for g11000
qb1e20 for k110 if rand lt 0.5
dnde1.3 else dnde/1.3 end
xnxednrandn(v,1)/sqrt(v)
qnsum(xn.2) if qn lt qb
qbqn dbdn xbxn end end
qeqb dedb xexb end
73
MATLAB-programm of the (1, l )-ES
v100 de1 xeones(v,1) for g11000
qb1e20 for k110 if rand lt 0.5
dnde1.3 else dnde/1.3 end
xnxednrandn(v,1)/sqrt(v)
qnsum(xn.2) if qn lt qb
qbqn dbdn xbxn end end
qeqb dedb xexb semilogy(g,qe,'b.')
hold on drawnow end
74
Thank you for your attention
Write a Comment
User Comments (0)
About PowerShow.com