Title: Kein Folientitel
1Transport equations
O2external O2 H2external H2 HO2external HO2
t1 1 0 0
O2 H2 H20
t2 0 1 0
t3 0 0 1
Transport Matrix T
2(No Transcript)
3(No Transcript)
4Elemental Balance
In biosystems, elements (C, H, N, O, P, S) are
always conserved, thus
O 2 0 1
O2 H2 H20
H 0 2 2
Elemental Composition Matrix E
5Reaction equation 1/2 O2 H2 H2O
6BRENDA Threonine dehydratase
7Reaction equation L-Homoserine PyruvateNH3
C4 H9 N O3 C3 H4 O3 NH3
8Elemental Balances May Reveal Inconsistencies in
Biochemical Reaction Systems
Should read L-Homoserine 2-Oxobutyrate NH3
9(No Transcript)
10Pathway (Topological) Analysis Metabolic Flux
Analysis
11Metabolic Network - Regulatory NetworkHierarchica
l Organisation
Metabolic Network
12Pathway Analysis Flux Analysis
Metabolic Network
13Introduction Pathway AnalysisMetabolic Flux
AnalysisExample
- Bioinformatics and Metabolic Engineering
- Structured metabolic models
- Metabolite balancing
- Conserved moieties
- Elementary flux modes
- Estimation of flux distributions
- Observability of metabolic fluxes
- Overdetermined and underdetermined systems
- Metabolic model of Saccharomyces cerevisiae
- Model Analysis
14Chemical entities (atoms, ions, assemblies of
atoms or ions) participating in a reaction system
without loss of integrity and always remaining in
the system (even if it is an open one) are called
conserved moieties. Example of a conservation
relation NADH NAD const.
15r1 Acetaldehyde H2ONAD AcetateNADH2 H r2
1/2 O2 NADHH H2O NAD
16r1 -1 1 0 -1 -1 1 -1
r2 0 0 -1/2 1 2 -1 1
t1 1 0 0 0 0 0 0
t2 0 1 0 0 0 0 0
t3 0 0 1 0 0 0 0
t4 0 0 0 1 0 0 0
Acetaldehyde Acetate O2 H20 H NADH NAD
t5 0 0 0 0 1 0 0
NADH NAD const.
17The presence of conservation relations leads to
linear dependent rows in the balance matrix N.
18r1 -1 1 0 -1 -1 1 -1
r2 0 0 -1/2 1 2 -1 1
t1 1 0 0 0 0 0 0
t2 0 1 0 0 0 0 0
t3 0 0 1 0 0 0 0
t4 0 0 0 1 0 0 0
Acetaldehyde Acetate O2 H20 H NADH NAD
t5 0 0 0 0 1 0 0
N0
N
19(No Transcript)
20(No Transcript)
21Since a metabolic reaction network comprises n
conservation relations (conserved moieties), n
algebraic relations between the balanced
metabolites occur.
22Introduction Pathway AnalysisMetabolic Flux
AnalysisExample
- Bioinformatics and Metabolic Engineering
- Structured metabolic models
- Metabolite balancing
- Conserved moieties
- Elementary flux modes
- Estimation of flux distributions
- Observability of metabolic fluxes
- Overdetermined and underdetermined systems
- Metabolic model of Saccharomyces cerevisiae
- Model Analysis
23Null- Space (Kernel)
N v 0
24 -1/2 -1 1
1 0 0
0 1 0
0 0 1
O2 H2 H2O
-1/2 -1 1
1 0 0
0 1 0
0 0 1
O2 H2 H2O
r1 t1 t2 t3
0 0 0
25 -1/2 -1 1
1 0 0
0 1 0
0 0 1
1 0 0
0 1 0
0 0 1
1 1/2 1
O2 H2 H2O
r1 t1 t2 t3
0 0 0
Row reduced echelon form of matrix N
261
1/2
1
1
-1/2 -1 1
1 0 0
0 1 0
0 0 1
1 0 0
0 1 0
0 0 1
1 1/2 1
O2 H2 H2O
1 1/2 1 -1
0 0 0
271
1
1/2
1
-1/2 -1 1
1 0 0
0 1 0
0 0 1
1 0 0
0 1 0
0 0 1
1 1/2 1
O2 H2 H2O
-1 -1/2 -1 1
0 0 0
28The basis of the kernel of N does NOT
necessarily fulfil reversibility properties.
29Degrees of Freedom
Degrees of Freedom number of fluxes - number of
linear independent rows of balance matrix N
Degrees of Freedom number of fluxes - rank(N)
Degrees of Freedom dim(kernel(N))
30 -1/2 -1 1
1 0 0
0 1 0
0 0 1
O2 H2 H2O
-1/2 -1 1
1 0 0
0 1 0
0 0 1
O2 H2 H2O
r1 t1 t2 t3
0 0 0
Degree of Freedom 4-31
31r1 -1 1 0 -1 -1 1 -1
r2 0 0 -1/2 1 2 -1 1
t1 1 0 0 0 0 0 0
t2 0 1 0 0 0 0 0
t3 0 0 1 0 0 0 0
t4 0 0 0 1 0 0 0
Acetaldehyde Acetate O2 H20 H NADH NAD
t5 0 0 0 0 1 0 0
Degree of Freedom 7-6 1
32v1 v2 v3
v1 1
v2 -1
v3 -1
M
0
irreversible
Degrees of Freedom number of fluxes -
rank(N) Degrees of Freedom 3 -1 2 The
Null-Space (kernel) is spanned by 2 base vectors
(flux modes)
33a) Flux vectors spanning the kernel of N
1
1
1
0
0
1
Flux Mode 1 a)
Flux Mode 2 a)
34b) Flux vectors spanning the kernel of N
2
1
1
0
1
1
Flux Mode 1 b)
Flux Mode 2 b)
35The base of the kernel of N is NOT unique.
36Flux Mode 1 b)
37Elementary Flux Modes
- Fulfil steady state condition
- Fulfil reversibilty properties
- Can not be decomposed into smaller modes (i.e.
modes that involve less enzymes)
38Network Design
39GLUCOSE
RIBU5P
G6P
ATP
XYL5P
RIB5P
F6P
NADP
E4P
F6P
GAP
ADP
3PG
NADPH
Pi
PEP
CO2
PYR
ACCOA
H2O
COA
THREONIN
OAC
ISOCIT
NAD
H
MAL
FADH2
AKG
FAD
NADH
FUM
SUC
40(No Transcript)
41irreversible
42Elementary Flux Mode 1
Y THREONIN / GLUCOSE 4/3
43Elementary Flux Mode 2
Y THREONIN / GLUCOSE 1
44Elementary Flux Mode 3
Y THREONIN / GLUCOSE 2/3
45Elementary Flux Mode 4
Y THREONIN / GLUCOSE 0
461
Elementary Flux Mode 5
GLUCOSE
3
RIBU5P
G6P
2
Y THREONIN / GLUCOSE 0
XYL5P
RIB5P
F6P
E4P
F6P
GAP
1
3PG
PEP
PYR
ACCOA
1
OAC
ISOCIT
MAL
AKG
FUM
SUC
471
Elementary Flux Mode 6
GLUCOSE
G6P
Y THREONIN / GLUCOSE 0
F6P
GAP
2
3PG
PEP
PYR
ACCOA
2
OAC
ISOCIT
MAL
AKG
FUM
SUC
48RIBU5P
G6P
6PG
XYL5P
RIB5P
F6P
E4P
F6P
GAP
2PG
FALD
METOH
PEP
PYR
ACCOA
THREONIN
OAC
ISOCIT
GLYO
MAL
AKG
FUM
SUC
49(No Transcript)
50(No Transcript)
51(No Transcript)
52Elementary Flux Modes
Use in Metabolic Engineering
- Optimal and suboptimal yields can be easily
obtained - Identification of dispensable enzymes (bypass)
- Medium optimisation
53Elementary Flux Modes
Use in Modelling Tools
- Identification of the complete material flow
functioning - Identification of parts of the network without
any function (dead subnets) - Identification of futile cycles
54Elementary Flux Modes
Some Properties
- The set of elementary flux modes is unique
- The vector space spanned by elementary flux modes
exceeds (or equals) the dimension of the kernel
55Introduction Pathway AnalysisMetabolic Flux
AnalysisExample
- Bioinformatics and Metabolic Engineering
- Structured metabolic models
- Metabolite balancing
- Conserved moieties
- Elementary flux modes
- Estimation of flux distributions
- Observability of metabolic fluxes
- Overdetermined and underdetermined systems
- Metabolic model of Saccharomyces cerevisiae
- Model Analysis
56Estimation of Metabolic Fluxes
57Experimental Determination ofNet Conversion Rates
58Estimation of Metabolic Fluxes
59Estimation of Metabolic Fluxes
60Estimation of Metabolic Fluxes
A) Exactly Determined System
B) Overdetermined System
C) Underdetermined System
61Estimation of Metabolic Fluxes
Exactly Determined System without conservation
relations
Observability criterion
62Estimation of Metabolic Fluxes
Underdetermined System
An underdetermined system can never be observed
63Estimation of Metabolic Fluxes
Overdetermined System
Observability criterion
64An overdetermined system isNOT always observable.
65v2
v1
v4
v5
S0
S1
M1
M2
M3
v3
Degrees of freedom 2
66v2
v1
v4
v5
S0
S1
M1
M2
M3
v3
Degrees of freedom 2
Fluxes derived from measurements v1, v4, v5
Not observeable v2, v3
67v2
v1
v4
v5
Vnetv3-v2
S0
S1
M1
M2
M3
v3
Degrees of freedom 2
Fluxes derived from measurements v1, v4, v5
Observeable vnet v3 -v2
68v2
v1
v4
v5
S0
S1
M1
M2
M3
v3
Degrees of freedom 2
Derived from measurements v1, v3, v5
Observeable v2, v4
69Model Validation
Invalid Model / Inconsistent Data
70 c2 -Distribution
71Introduction Pathway AnalysisMetabolic Flux
AnalysisExample
- Bioinformatics and Metabolic Engineering
- Structured metabolic models
- Metabolite balancing
- Conserved moieties
- Elementary flux modes
- Estimation of flux distributions
- Observability of metabolic fluxes
- Overdetermined and underdetermined systems
- Metabolic model of Saccharomyces cerevisiae
- Model Analysis
72Metabolic Model of Saccharomyces cerevisiae
73Nutrients
Excreted Products
Biomass
74Macromolecular Composition of Saccharomyces
cerevisiae
75Model Structure
GlucoseAcetateCO2O2EthanolGlycerolHH2OAmm
oniaSulphatePhosphateBiomass
GlycolysisPentose Phosphate PathwayAnabolismSyn
thesis of Macromolecules (Polymerisation)
Cytosol
System boundary
76Introduction Pathway AnalysisMetabolic Flux
AnalysisExample
- Bioinformatics and Metabolic Engineering
- Structured metabolic models
- Metabolite balancing
- Conserved moieties
- Elementary flux modes
- Estimation of flux distributions
- Observability of metabolic fluxes
- Overdetermined and underdetermined systems
- Metabolic model of Saccharomyces cerevisiae
- Model Analysis
77Conservation Relations
nadcytnadhcyt const nadmitnadhmit
const. nadpcytnadphcyt const. accoAcytaccoAmit
coAcytcoAmitsuccoAcytsuccoAmit
const. fadmitfadh2mit const. fthfcytmethfcyt
mythfcytthfcyt const.
78Violated Conservation Relation
79Yields of Amino Acids on Glucose Obtained from
Elementary Flux Modes
80 Maximal Theoretical Yields ofAmino Acids on
Glucose
81Maximal Yields ofMacromolecules on Glucose
82Maximal Yield ofBiomass on Glucose
1 composition of macromolecules taken at a growth
rate of m 0.1 h-1 2 same metabolic network but
without compartmentation
83Medium Design Effect of Additives on the Yield
of Biomass on Glucose
D Y (g/g)
84Net Conversion Rates
85Saccharomyces cerevisia CBS 7336 D0.10 h-1
Cytosol
Mitochondrien
86Saccharomyces cerevisia CBS 7336 D0.33 h-1
87Index
Bioinformatics and Metabolic Engineering
Structured metabolic models Metabolite
balancing Conserved moieties Elementary flux
modes Estimation of flux distributions
Observability of metabolic fluxes Overdetermined
and undertetermined systems Metabolic model of
Saccharomyces cerevisiae Model Analysis
Computational Aspects