Mathematical Components - PowerPoint PPT Presentation

1 / 14
About This Presentation
Title:

Mathematical Components

Description:

I. Pasca, L. Rideau, L. Th ry, B. Werner... Why use a computer for math? To prove calculations ... All finite simple groups belong to 12 general classes, except ... – PowerPoint PPT presentation

Number of Views:49
Avg rating:3.0/5.0
Slides: 15
Provided by: toto1
Category:

less

Transcript and Presenter's Notes

Title: Mathematical Components


1
Mathematical Components
  • Georges Gonthier
  • Y. Bertot, F. Garillot, A. Mahboubi, S. Ould
    Biha,
  • I. Pasca, L. Rideau, L. Théry, B. Werner

2
Why use a computer for math?
  • To prove calculations
  • To improve refereeing
  • To explore structure

3
Building computer proofs
Proof text
Proof script
(ssreflect)
tactic interpreter
Typed ?-calculus
4
Finite Group Theory
  • Theory of composable, reversible operators
  • Puzzles
  • Solving polynomials x5 3x2 7
  • Gauge theory
  • Cristallography
  • Cryptography

5
Simple Group Classification
  • Theorem (Jordan-Hölder)
  • Every finite group factors uniquely into simple
    groups.
  • Theorem (Classification)
  • All finite simple groups belong to 12 general
    classes, except for 26 sporadic exceptions.

6
The Finite Group Challenge
Frobenius groups Thompson factorisation character
theory linear representation Galois theory linear
algebra polynomials
7
Interfaces and objects
bool if b then
8
Big Operators
\bigcap_H lt G \atop H \rm\ maximal H
9
Example determinants
  • Leibnitz formula
  • Cauchy theorem AB A B

(?j Ai,j Bj,is)
(AB)i,is
?i Bi?,is
Bi?,is
? ?i Ai,i? ? (-1)s ?j Bj,j?-1s
i j?-1
?
s?Sn
??Sn
??Sn
A B
10
Interfacing big ops
bool
Equality
nat
Finite
I_n
seq
11
A proof
\begineqnarray \det AB \sum_\sigma \in
S_n (-1)\sigma \prod_i
\left(\sum_j A_ij B_j\sigma(i)\right)\\
\sum_\phi \ 1, n \rightarrow 1,
n \sum_\sigma \in S_n
(-1)\sigma \prod_i A_i\phi(i)
B_\phi(i)\sigma(i)\\ \sum_\phi
\notin S_n \sum_\sigma \in S_n
(-1)\sigma \prod_i A_i\phi(i)
B_\phi(i)\sigma(i)
\sum_\phi \in S_n \sum_\sigma \in S_n
(-1)\sigma \prod_i A_i\phi(i)
B_\phi(i)\sigma(i)\\ \sum_\phi
\notin S_n \left(\prod_i A_i\phi(i)\right)?
\sum_\sigma \in S_n
(-1)\sigma \prod_i B_\phi(i)\sigma(i)
\\ \sum_\phi \in S_n
(-1)\phi \left(\prod_i
A_i\phi(i)\right)?
\sum_\sigma \in S_n
(-1)\phi-1\sigma
\prod_k B_k\sigma(\phi-1(k))\\
\sum_\phi \notin S_n \left(\prod_i
A_i\phi(i)\right)? \det
\left(B_\phi(i)j\right)_ij
(\det A)\sum_\tau \in S_n(-1)\tau \prod_k
B_k\tau(k)\\ 0 (\det
A)(\det B)\\ \endeqnarray The first step swaps
the iterated product of the Leibnitz formula
with the sum in the general term of the matrix
product, generating a sum over all functions from
indices to indices. This is split into a sum
over non-injective functions and a sum over
permutations. The former is rearranged into a
weighted sum of determinants of matrices with
repeated rows, while the latter is reindexed,
using the group properties of permutations, to
become the desired product of determinants.
Lemma determinantM forall n (A B M_(n)), \det
(A m B) \det A \det B. Proof. movegt n A B
rewrite big_distrl /. pose AB (f ffun _) (s
'S_n) i A i (f i) B (f i) (s
i). transitivity (\sum_f \sum_(s 'S_n) (-1)
s \prod_i AB f s i). rewrite exchange_big
apply eq_bigr gt / s _. rewrite -big_distrr
/ congr (_ _). pose F i j A i j B j (s
i) rewrite -(bigA_distr_bigA F) /. by apply
eq_bigr gt x _ rewrite mxK. rewrite (bigID (fun
f ffun _ gt injectiveb f)) / addrC big1
?simp gt f Uf. rewrite (reindex (fun s gt
pval s)) last first. have s0 'S_n 1g
pose uf (f F_(n)) uniq (val f). exists
(insubd s0) gt / f Uf first apply val_inj
exact insubdK. apply eq_big gt / ss _
rewrite ?(valP s) // big_distrr /. rewrite
(reindex (mulg s)) last first. by exists
(mulg s-1) gt t _ rewrite ?mulKVg ?mulKg.
apply eq_bigr gt t _ rewrite big_split / mulrA
mulrCA mulrA mulrCA mulrA. rewrite -signr_addb
odd_permM !pvalE congr (_ _). rewrite
(reindex s-1) last first. by exists (s _
-gt _) gt i _ rewrite ?permK ?permKV. by apply
eq_bigr gt i _ rewrite permM permKV ?eqxx //
-3i(permKV s). transitivity (\det
(\matrix_(i, j) B (f i) j) \prod_i A i (f i)).
rewrite mulrC big_distrr / apply eq_bigr gt s
_. rewrite mulrCA big_split // congr (_ (_
_)). by apply eq_bigr gt x _ rewrite
mxK. case/injectivePn Uf gt i1 i2 Di12
Ef12. by rewrite (alternate_determinant Di12)
?simp // gt j rewrite !mxK Ef12. Qed.
rewrite (reindex (mulg s)) last first. by
exists (mulg s-1) gt t _ rewrite ?mulKVg
?mulKg.
12
Interfacing groups
bool
Equality
Morphism
Finite
13
Some conclusions
  • Type theory provides a rich language for
    expressing the intended use of theories.
  • Investing in theory infrastructure is most
    productive.
  • Computer mathematics is becoming a reality

14
(No Transcript)
Write a Comment
User Comments (0)
About PowerShow.com