Title: Global Modelling on the Expanded Spherical Cube
1Global Modelling on theExpanded Spherical Cube
Alistair Adcroft MIT
Chris Hill John Marshall
2The MIT GCM
- Unified dynamical kernel (z-p isomorphism)
- - both an ocean and atmospheric GCM
- Finite volume (topography) ? grid point model
- Parallel computing using tiles
- Growing user group
- - MIT, SCRIPPS, WHOI, JPL, U. Conn.,
3What are the issues?
- Grid-point model
- Time-step limited by grid-spacing
- Converging meridians ? very small ?x at poles
- Fill-in Artic Ocean or
- Filtering in Atmosphere (eg. zonal FFTs)
- wastes resolution
- difficult with topography
- Anisotropic grid
- Distorts dynamics
4Regular Latitude-Longitude Grid?? ?? 2?/N
Number of points N?N/2 ?x 2?R/N cos(?) ?y
2?R/N ?xpole ? 2??y/N 4?2R/N2
Uniformity of resolution ?xeq/?xpole ?
N/(2?) Ratio of max/min areas Aeq/Apole ?
N/(2?) Aspect ratio ?y/?xpole ? N/(2?)
5Isotropic Latitude-Longitude Grid?? 2?/N
?? min( ?? cos(?) , ??min )
Num. points N ? 5/3 N ln 1/ ??min ?y ?x
2?R/N cos(?) ? ?lt?o ?x?o ?y?o R??min
? ?gt?o ?xpole ? 2?R??min/N
Uniformity of resolution ?xeq/?x?o 2?/(N
??min) ?xeq/?xpole 1/??min Aspect ratio ?y/?x
? 1 ? ?lt?o ?ymin/?xpole N/(2?)
6What are the alternatives?
- Move North pole into Greenland (ocean)
- eg. POP (Los Alamos), OPA (LODYC)
- Spectral/semi-lagrangian methods (atmosphere)
- Unstructured grid (finite element)
- eg. SEOM (Rutgers), QUODDY (Dartmouth)
- Structured grids of hexagons, triangles, etc.
- Cubic or octagonal grids (square grid cells)
- Sadourny, 1972 Ronchi et al., 1995 Rancic et
al., 1996 - McGregor, 1996
7Gnomonic transformationfrom cube to sphere
- Grid face of cube
- Project image of grid onto sphere
Sadourny, MWR 1972 Ronchi et al., JCP 1996
8Gnomonic transformationfrom cube to sphere
Num. points 6?(M?M) 3/8 N2 Ratio ?xmax/?xmin
2 Ratio Amax/Amin 33/2 (or ¼ 33/2)
- Uniform coverage of sphere
- Nearly isotropic resolution
- Need general curvilinear coordinates
- Angular discontinuity
- generates noise (Sadourny 72)
9General curvilinear coordinates
- Covariant and contravariant flow components
- g12g21 ? 0 gives different numerical algorithm
u,v
u,v
C-grid
B-grid
u,v
u,v
10Covariant / Contravariant
V
a2
a2
a1
a1
V
a2
V
a1
11Conformal mapping ofcube to the sphere
- Preserves angle between intersecting grid lines
- W(Z) and Z(W) expressed as Taylor series
Rancic et al., QJRMS 1996
12Conformal mapping ofcube to the sphere
Num. points 6?(M?M) 3/8 N2 Ratio ?xmax/?xmin
M1/3 Ratio Amax/Amin ¾M2/3
- Locally orthogonal
- Nearly isotropic
- Unbounded ?xmax/?xmin
- Much better scaling than ?-? grid
13Quasi-smooth conformal mapping
Ratio ?xmax/?xmin ? 2.30 Ratio Amax/Amin ? 3.86
Ratio ?xmax/?xmin ? 1.54 Ratio Amax/Amin ? 1.54
Purser Rancic, QJRMS 1999
14Conformal mapping again
Ratio ?xmax/?xmin ? 2.30 Ratio Amax/Amin ? 3.86
Ratio ?xmax/?xmin ? 1.99 Ratio Amax/Amin ? 1.94
Purser Rancic, QJRMS 1999
15The comparison
16Global bathymetry128x64 6x32x32
17Mercator projection
18Global bathymetry on tiles
S
N
Grid 6x 32x32 (equiv. to 2.8x2.8)
19Implementation
- Regular pattern of
- exchange
- - odd-odd, even-even
- - odd-even
20Exchanges (B-gtR)
21Exchanges (R-gtB)
22Evaluating terms at corners I
23Evaluating terms at corners II
24Finite volume expressions
25(No Transcript)
26(No Transcript)
27(No Transcript)
28(No Transcript)
29Conclusions
- Larger time step (how much?)
- Uniform/isotropic global coverage
- No (zonal) filtering
- Unfamiliar (ease of use issues)
- Need real ice model for Arctic!
- Pre- and post-processing software on cube
- eg. interpolation of input data