Global Modelling on the Expanded Spherical Cube - PowerPoint PPT Presentation

1 / 22
About This Presentation
Title:

Global Modelling on the Expanded Spherical Cube

Description:

Purser & Rancic, QJRMS 1999. MIT Climate Modeling Initiative. The comparison 2/3(N/4)2/3 2.7 ... 3 1.9. Quasi-smooth (Purser & Rancic '97) Expanded cubes N ... – PowerPoint PPT presentation

Number of Views:330
Avg rating:3.0/5.0
Slides: 23
Provided by: alistair5
Category:

less

Transcript and Presenter's Notes

Title: Global Modelling on the Expanded Spherical Cube


1
Global Modelling on theExpanded Spherical Cube
Alistair Adcroft MIT
2
The MIT GCM
  • Unified dynamical kernel (z-p isomorphism)
  • - both an ocean and atmospheric GCM
  • Finite volume (topography) ? grid point model
  • Parallel computing using tiles
  • Growing user group
  • - MIT, SCRIPPS, WHOI, JPL, U. Conn.,

3
What are the issues?
  • Grid-point model
  • Time-step limited by grid-spacing
  • Converging meridians ? very small ?x at poles
  • Fill-in Artic Ocean or
  • Filtering in Atmosphere (eg. zonal FFTs)
  • wastes resolution
  • difficult with topography
  • Anisotropic grid
  • Distorts dynamics

4
Regular Latitude-Longitude Grid?? ?? 2?/N
Number of points N?N/2 ?x 2?R/N cos(?) ?y
2?R/N ?xpole ? 2??y/N 4?2R/N2
Uniformity of resolution ?xeq/?xpole ?
N/(2?) Ratio of max/min areas Aeq/Apole ?
N/(2?) Aspect ratio ?y/?xpole ? N/(2?)
5
Isotropic Latitude-Longitude Grid?? 2?/N
?? min( ?? cos(?) , ??min )
Num. points N ? 5/3 N ln 1/ ??min ?y ?x
2?R/N cos(?) ? ?lt?o ?x?o ?y?o R??min
? ?gt?o ?xpole ? 2?R??min/N
Uniformity of resolution ?xeq/?x?o 2?/(N
??min) ?xeq/?xpole 1/??min Aspect ratio ?y/?x
? 1 ? ?lt?o ?ymin/?xpole N/(2?)
6
What are the alternatives?
  • Move North pole into Greenland (ocean)
  • eg. POP (Los Alamos), OPA (LODYC)
  • Spectral/semi-lagrangian methods (atmosphere)
  • Unstructured grid (finite element)
  • eg. SEOM (Rutgers), QUODDY (Dartmouth)
  • Structured grids of hexagons, triangles, etc.
  • Cubic or octagonal grids (square grid cells)
  • Sadourny, 1972 Ronchi et al., 1995 Rancic et
    al., 1996
  • McGregor, 1996

7
Gnomonic transformationfrom cube to sphere
  • Grid face of cube
  • Project image of grid onto sphere

Sadourny, MWR 1972 Ronchi et al., JCP 1996
8
Gnomonic transformationfrom cube to sphere
Num. points 6?(M?M) 3/8 N2 Ratio ?xmax/?xmin
2 Ratio Amax/Amin 33/2 (or ¼ 33/2)
  • Uniform coverage of sphere
  • Nearly isotropic resolution
  • Need general curvilinear coordinates
  • Angular discontinuity
  • generates noise (Sadourny 72)

9
General curvilinear coordinates
  • Covariant and contravariant flow components
  • g12g21 ? 0 gives different numerical algorithm

u,v
u,v
C-grid
B-grid
u,v
u,v
10
Covariant / Contravariant
V
a2
a2
a1
a1
V
a2
V
a1
11
Conformal mapping ofcube to the sphere
  • Preserves angle between intersecting grid lines
  • W(Z) and Z(W) expressed as Taylor series

Rancic et al., QJRMS 1996
12
Conformal mapping ofcube to the sphere
Num. points 6?(M?M) 3/8 N2 Ratio ?xmax/?xmin
M1/3 Ratio Amax/Amin ¾M2/3
  • Locally orthogonal
  • Nearly isotropic
  • Unbounded ?xmax/?xmin
  • Much better scaling than ?-? grid

13
Quasi-smooth conformal mapping
Ratio ?xmax/?xmin ? 2.30 Ratio Amax/Amin ? 3.86
Ratio ?xmax/?xmin ? 1.54 Ratio Amax/Amin ? 1.54
Purser Rancic, QJRMS 1999
14
The comparison
15
Global bathymetry128x64 6x32x32
16
Mercator projection
17
Global bathymetry on tiles
S
N
Grid 6x 32x32 (equiv. to 2.8x2.8)
18
Implementation
  • Regular pattern of
  • exchange
  • - odd-odd, even-even
  • - odd-even

19
Evaluating terms at corners I
20
Evaluating terms at corners II
21
Finite volume expressions
22
Metric terms?
Original model equations on the sphere
Non-hydrostatic
Hydrostatic
Vector invariant equations (all coordinate
systems)
23
Temperature (950 mb)
Day 2700.5
24
Temperature (950mb)
Day 270.5
25
Temperature (950 mb)
Day 2700.5
26
Conclusions
  • Larger time step
  • 128 x 64 Lat-Lon (no filters) 30 seconds?
  • 128 x 64 Lat-Lon (with filters) 450 seconds
  • 32 x 32 x 6 Cubic-Sphere 12 minutes
  • 28? Minutes with better time-stepping
  • Less memory 1/3
  • 2/3 due to grid
  • 1/2 due to time-stepping vector invariant

27
Next steps
  • Write it up!
  • Lateral boundary conditions (atmos/ocean)
  • Parallelization, I/O
  • Overhaul wrapper
  • Improve vorticity/tracer advection
  • Flux limited, semi-lagragian finite volume
Write a Comment
User Comments (0)
About PowerShow.com