Title: VEDIC MATHEMATICS : Primes
1VEDIC MATHEMATICS Primes
- T. K. Prasad
- http//www.cs.wright.edu/tkprasad
2Divisibility
- A number n is divisible by f if there exists
another number q such that n f q. - f is called the factor and q is called the
quotient. - 25 is divisible by 5
- 6 is divisible by 1, 2, and 3.
- 28 is divisible by 1, 2, 4, 7, 14, and 28.
- 729 is divisible by 3, 9, and 243.
3Prime Numbers and Composite Numbers
- A prime number is a number that has exactly two
factors 1 and itself. - Smallest prime number is 2.
- 1 is not a prime number.
- Examples 2, 3, 5, 7, 11, 13, 17, 19, 23, 29,
etc. - A composite number is a number that has a factor
other than 1 and itself. - 1 is not a composite number.
4First 100 primes
-
- 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53
59 61 67 71 73 79 83 89 97 101 103 107 109 113
127 131 137 139 149 151 157 163 167 173 179 181
191 193 197 199 211 223 227 229 233 239 241 251
257 263 269 271 277 281 283 293 307 311 313 317
331 337 347 349 353 359 367 373 379 383 389 397
401 409 419 421 431 433 439 443 449 457 461 463
467 479 487 491 499 503 509 521 523 541
5Eratosthenes and the Primes
- Eratosthenes of Cyrene (276 B.C. - 194 B.C.,
Greece) was a Greek mathematician, poet, athlete,
geographer and astronomer. - Eratosthenes was the librarian at Alexandria,
Egypt. - He made several discoveries and inventions
including a system of latitude and longitude. He
was the first person to calculate the
circumference of the Earth, and the tilt of the
earth's axis. - Eratosthenes devised a 'sieve' to discover prime
numbers.
6Sieve
7The Sieve of Eratosthenes
- Algorithm to enumerate primes n
- Generate the sequence 2 to n
- Print the smallest number in the remaining
sequence, which is the new prime p. - Remove all the multiples of p.
- Repeat 3 and 4 until the sequence is exhausted.
8Hundreds Chart
1 2 3 4 5 6 7 8 9 10
11 12 13 14 15 16 17 18 19 20
21 22 23 24 25 26 27 28 29 30
31 32 33 34 35 36 37 38 39 40
41 42 43 44 45 46 47 48 49 50
51 52 53 54 55 56 57 58 59 60
61 62 63 64 65 66 67 68 69 70
71 72 73 74 75 76 77 78 79 80
81 82 83 84 85 86 87 88 89 90
91 92 93 94 95 96 97 98 99 100
91 Cross out 1 it is not prime.
1 2 3 4 5 6 7 8 9 10
11 12 13 14 15 16 17 18 19 20
21 22 23 24 25 26 27 28 29 30
31 32 33 34 35 36 37 38 39 40
41 42 43 44 45 46 47 48 49 50
51 52 53 54 55 56 57 58 59 60
61 62 63 64 65 66 67 68 69 70
71 72 73 74 75 76 77 78 79 80
81 82 83 84 85 86 87 88 89 90
91 92 93 94 95 96 97 98 99 100
102 Leave 2 cross out multiples of 2
1 2 3 4 5 6 7 8 9 10
11 12 13 14 15 16 17 18 19 20
21 22 23 24 25 26 27 28 29 30
31 32 33 34 35 36 37 38 39 40
41 42 43 44 45 46 47 48 49 50
51 52 53 54 55 56 57 58 59 60
61 62 63 64 65 66 67 68 69 70
71 72 73 74 75 76 77 78 79 80
81 82 83 84 85 86 87 88 89 90
91 92 93 94 95 96 97 98 99 100
113 Leave 3 cross out multiples of 3
1 2 3 4 5 6 7 8 9 10
11 12 13 14 15 16 17 18 19 20
21 22 23 24 25 26 27 28 29 30
31 32 33 34 35 36 37 38 39 40
41 42 43 44 45 46 47 48 49 50
51 52 53 54 55 56 57 58 59 60
61 62 63 64 65 66 67 68 69 70
71 72 73 74 75 76 77 78 79 80
81 82 83 84 85 86 87 88 89 90
91 92 93 94 95 96 97 98 99 100
124 Leave 5 cross out multiples of 5
1 2 3 4 5 6 7 8 9 10
11 12 13 14 15 16 17 18 19 20
21 22 23 24 25 26 27 28 29 30
31 32 33 34 35 36 37 38 39 40
41 42 43 44 45 46 47 48 49 50
51 52 53 54 55 56 57 58 59 60
61 62 63 64 65 66 67 68 69 70
71 72 73 74 75 76 77 78 79 80
81 82 83 84 85 86 87 88 89 90
91 92 93 94 95 96 97 98 99 100
135 Leave 7 cross out multiples of 7
1 2 3 4 5 6 7 8 9 10
11 12 13 14 15 16 17 18 19 20
21 22 23 24 25 26 27 28 29 30
31 32 33 34 35 36 37 38 39 40
41 42 43 44 45 46 47 48 49 50
51 52 53 54 55 56 57 58 59 60
61 62 63 64 65 66 67 68 69 70
71 72 73 74 75 76 77 78 79 80
81 82 83 84 85 86 87 88 89 90
91 92 93 94 95 96 97 98 99 100
146Leave 11 cross out multiples of 11
1 2 3 4 5 6 7 8 9 10
11 12 13 14 15 16 17 18 19 20
21 22 23 24 25 26 27 28 29 30
31 32 33 34 35 36 37 38 39 40
41 42 43 44 45 46 47 48 49 50
51 52 53 54 55 56 57 58 59 60
61 62 63 64 65 66 67 68 69 70
71 72 73 74 75 76 77 78 79 80
81 82 83 84 85 86 87 88 89 90
91 92 93 94 95 96 97 98 99 100
15All the numbers left are prime
1 2 3 4 5 6 7 8 9 10
11 12 13 14 15 16 17 18 19 20
21 22 23 24 25 26 27 28 29 30
31 32 33 34 35 36 37 38 39 40
41 42 43 44 45 46 47 48 49 50
51 52 53 54 55 56 57 58 59 60
61 62 63 64 65 66 67 68 69 70
71 72 73 74 75 76 77 78 79 80
81 82 83 84 85 86 87 88 89 90
91 92 93 94 95 96 97 98 99 100
16The Prime Numbers from 1 to 100 are as follows
2,3,5,7,11,13,17,19, 23,29,31,37,41,43,47, 53,59,6
1,67,71,73, 79,83,89,97
17Perfect Number
- A perfect number is a number which is equal to
the sum of its (proper) factors. - Examples 6, 28, 496, 8128, etc
- 1 2 3 6
- 1 2 4 7 14 28
- These were the only perfect numbers known to
early Greek mathematicians (500 BC).
18Amicable Numbers
- Amicable numbers are pairs of numbers such that
the sum of the proper factors of one is equal to
the other. - Example (220, 284)
- Proper factors of 220 are 1, 2, 4, 5, 10, 11, 20,
22, 44, 55 and 110, which sum to 284 and - Proper factors of 284 are 1, 2, 4, 71, and 142,
which sum to 220. - Amicable and perfect numbers were known to the
Pythagoreans (500 BC).
19Prime Decomposition
- Every natural number greater than one has a
unique prime factorization. That is, it can be
uniquely expressed as a product of prime numbers.
- E.g.,
- 120 2 2 2 3 5
- 981189 3 3 11 11 17 53
- 3141879 3 13 13 6197
20Proof that Primes are infinite Proof by
Euclid (300 B.C. )
- Let us assume that the set of primes is finite.
Primes 2, 3, , p - Consider the number n (2 3 p) 1.
- Claim n is a prime but is not in Primes.
- Reason Each prime divides the first summand but
not 1, so it will not divide n. Hence, n is a new
prime not in Primes! - Conclusion Primes are not finite.
21Advanced Material
22Perfect Numbers
- Euclid (300 BC) discovered a general formula for
even perfect numbers. - 2(n - 1) (2n - 1) is a perfect
number - whenever (2n - 1) is a (Mersenne)
prime. - Verify that for n 2, 3, 5, and 7,
- you get 6, 28, 496, and 8128,
respectively. - Fifth perfect number is 33550336, for n 13.
- (211 - 1) is not a prime because 2047 23 89.
23Demonstrating perfection!
- Prove 2(n - 1) (2n - 1) is a perfect number,
- whenever (2n - 1) is a prime.
- Proof Sum of factors
- 2(n - 1) 2(n - 2) 2 1
- (2n - 1) 2(n - 2)
2 1 - 2n - 1
- (2n - 1) 2(n - 1) - 1
(see next slide)
24Auxiliary Result
- Show
- 2(n - 1) 2(n - 2) 2 1 2n -
1 - Let S 2(n - 1) 2(n - 2) 2 1
- 2 S 2n 2(n - 1) 22 2
- 2 S - S 2n 1
- S 2n - 1
25(contd)
- Proof Sum of factors
- 2n - 1 (2n - 1) 2(n - 1) -
1 - (2n - 1) 1 2(n - 1) - 1
- (2n - 1) 2(n - 1)
- (original number)
26Open problems in Number Theory
- Goldbach's conjecture Every even integer greater
than 2 can be written as the sum of two primes. - Odd perfect numbers It is unknown whether there
are any odd perfect numbers. - Observe Factoring large primes is a very hard
problem so a number of cryptographic systems are
based on that fact.
27Primes Generation in Scheme
- (define (interval-list m n)
- (if (gt m n) '()
- (cons m (interval-list ( 1 m) n))))
- (define (primeslt n)
- (sieve (interval-list 2 n)))
- (primeslt 300)
28(contd)
- (define (sieve l)
- (define (remove-multiples n l)
- (if (null? l) '()
- (if ( (modulo (car l) n) 0) division
test - (remove-multiples n (cdr l))
- (cons (car l)
- (remove-multiples n (cdr l))))))
- (if (null? l) '()
- (cons (car l)
- (sieve (remove-multiples (car l) (cdr l))))))
29Perfection in Python
- def perfectNumber(n)
- (factorList, factorSum) (,0)
- for i in range(1, 1 (n / 2)) help(math)
- if ( (n i) 0 )
- factorList.append(i)
- factorSum i
- if n factorSum
- return (n, factorList)
- else
- return False