the fact of evolution - PowerPoint PPT Presentation

1 / 56
About This Presentation
Title:

the fact of evolution

Description:

Outcross mating. Avoidance of Inbreeding. by Males. Volume of Mating Container. Male 1 ... Female 2 (outcross) Hardy-Weinberg. p2 2pq q2. AA Aa aa. Relax ... – PowerPoint PPT presentation

Number of Views:64
Avg rating:3.0/5.0
Slides: 57
Provided by: david146
Category:

less

Transcript and Presenter's Notes

Title: the fact of evolution


1
Biology 2900Principles of Evolution and
Systematics
  • Topics
  • - the fact of evolution
  • - natural selection
  • - population genetics
  • - natural selection and adaptation
  • - speciation, systematics and
  • phylogeny
  • - the history of life

2
Evolution in the News
Males Surname Y
3
Topics
  • Mutation source of genetic variation (Ch. 4)
  • Population genetics gene frequencies
  • within populations (Ch.
    5, 6)

4
  • Evolution a change over time of the proportions
    of individuals organisms differing genetically in
    one or more traits

5
  • Evolution by Natural Selection
  • 1. Within species variation (Lab 1)
  • 2. Some variations inherited by offspring
  • 3. Some individuals more successful at surviving
    and reproducing than others
  • 4. Survival and reproduction not random
  • No Genetic Variation, No Evolution

6
Mutation and Genetic Variation Chapter 4
  • Mutations are the raw material of evolution
  • Mutation?genetic variation?natural selection

  • Evolution

7
  • Genes in Populations
  • Questions
  • How much genetic diversity exists in natural
    populations ?
  • What determines the level and pattern of genetic
    variation ?
  • What role does natural selection play?

8
Genetic Variability
  • Measures of genetic variability
  • 1. polymorphism ( of loci with gt 1
    allele)
  • 2. Number of alleles
  • 3. Heterozygosity Frequency of
    heterozygotes
  • H
    2pq

9
  • Allele frequencies AA n1

  • Aa n2

  • aa n3
  • f(A) (2n1 n2 ) (n1 ½ n2 ) p
  • 2N N
  • f(a) (2n3 n2 ) (n3 ½ n2 ) q
  • 2N N

10
  • Hardy-Weinberg Theorem
  • Relationship between allele
    frequencies and genotype frequencies
  • f(A) p, f(a) q
  • f(AA) p2
  • f(Aa) 2pq HW proportions
  • f(aa) q2

11
Calculate allele frequencies
Silene acaulis
SS SF FF
  • Pgi
  • Genotypes freq (S) 104
    ½(44)
  • SS 104
    151
  • SF 44
    0.834
  • FF 3
  • Total 151 freq (F) 1
    0.834

  • 0.166

12
Testing for HWE
  • S F
  • p 0.834 q 0.166
  • Expected
    Observed
  • SS p2 151 105.03 104
  • SF 2pq 151 41.81 44
  • FF q2 151 4.16
    3

  • X2 0.44 ns
  • Conclusion No deviation from HWE

13
Hardy-Weinberg
  • Equilibrium Allele and genotype
  • frequencies do not change across generations
  • Assuming - random mating
  • - large population size
  • - no selection
  • - no migration
  • - no mutation

14
Relax Assumptions
  • Processes that can change allele and/or genotype
    frequencies
  • - Mutation
  • - Migration
  • - Non-random mating
  • - Finite population size
  • - Selection ? differential survival,
  • fecundity etc. among genotypes
  • ( Lab. 2)

15
Mutation
  • How effective is mutation at changing allele and
    genotype frequencies over time ?

16
Mutation
  • Gen. 1
  • AA Aa aa p
    q
  • 0.81 0.18 0.01 0.9
    0.1
  • Mutation u 0.0001 A?a
  • A 0.90 (0.0001)(0.9) 0.89991
  • a 0.10 (0.0001)(0.9) 0.10009


17
Mutation
  • Gen. 2
  • AA Aa aa
  • 0.80984 0.18014 0.01002
  • Very little change in allele and genotype
  • frequencies


18
Mutation
  • one-way (irreversible)
  • A a Rate u per
    generation
  • u 2 x 10-6
    0.000002
  • f(A) p
  • p p - up p p - p
  • p - up

p 0 ?
0 - up
19
u 2 x 10-6
20
Mutation
  • - Ultimate source of genetic variation
  • - Not a potent factor in evolution by itself
  • But,
  • Mutation Selection a very potent factor in
    evolution (more later)


21
Migration
  • How effective is migration for changing allele
    frequencies in a population?

22
Lizard Island
Islands isolation,
colonization, migration
23
  • Islands
  • different sizes
  • diff. distances from mainland
  • natural laboratories

Lake Erie
24
Migration
ISLAND
Mainland (Continent)
  • Migration gene flow (migration

  • survival mating)

25
Migration (one way)
  • A1 , A2 alleles Island
    Continent
  • p q 1.0 pI
    pC
  • Next generation pI pI (1 - m) m pC
  • Island pop. receives a proportion (m) of its
    genes from continent each generation

26
Migration
  • Next generation pI pI (1 - m) m pC
  • pI pI - pI
  • pI
    m(pC - pI)
  • Equilibrium pI 0 pI
    pC
  • Migration homogenizes allele frequencies

27
Mussel life history
Example
Spat
Settlement
Planktonic larvae
28
(No Transcript)
29
0 20 60 600 610
615 3000 KM
Km
30
Migration

- connects physically separated populations
- determines degree of
panmixia - isolation by distance (dispersal
ability)
31
Hardy-Weinberg
  • Relax Assumptions
  • ? - Mutation
  • ? - Migration
  • - Non-random mating
  • - Finite population size
  • - Selection - differential survival,
  • fecundity etc. among genotypes

32
Non-Random Mating
  • Inbreeding (mating among relatives)
  • - increased freq. of homozygotes
  • - decreased freq. of heterozygotes
  • Self-fertilization - most extreme form
  • of inbreeding

33
Selfing
Aa x Aa
  • Gen. AA Aa aa N

  • AA Aa aa
  • 0 20 40 20
    80 10 20 10
  • 1 2010 20 2010 80
  • Each individual leaves one offspring

¼
¼
½
3/8
3/8
2/8
34
Selfing
  • Gen. AA Aa aa q
    H F
  • 0 1/4 1/2 1/4
    1/2 1/2 0
  • 1 3/8 1/4 3/8
    1/2 1/4 1/2
  • 1/2 0 1/2
    1/2 0 1

8
35
Inbreeding Coefficient F
  • The amount of heterozygosity lost due to

  • inbreeding
  • F He - Ho
    Ho obs
  • He
    He exp 2pq
  • example
  • AA Aa aa p q
  • obs .20 .40 .40 .4 .6
  • exp .16 .48 .36 .4 .6
    F .167

36
Inbred Population
  • AA Aa
    aa
  • p2 Fpq 2pq - 2Fpq q2
    Fpq
  • F 0 no inbreeding F 1 completely
    inbred

37
Inbreeding Coefficient F
  • F probability 2 alleles in a homozygote are
  • identical by descent
  • - Calculate F from pedigree
  • - Inbreeding increases frequency of

  • homozygotes

38
F calculated from pedigree
8 alleles
Non-inbred mating
No chance of inheriting the same allele by descent
39
Fig. 6.27
F calculated from pedigree
A
B
½
½
alleles
Half Sibs
½
½
Prob. ½ ½ ½ ½ 1/16
Prob. ½ ½ ½ ½ 1/16
F Prob. of A or B 1/16 1/16 1/8
(progeny from a half sib mating)
40
Increase in F with inbreeding
41
Inbreeding Depression
  • Loss of fitness on inbreeding
  • Inbreeding depression
  • recessive deleterious alleles exposed

42
Inbreeding Depression
  • d d
  • d d
  • d
  • d

X
Same chromosomes by descent
d deleterious recessive allele
Inbred progeny
43
mortality
http//www.cousincouples.com/?pagefacts
44
Fig. 6.28
Different Human Populations
Children from cousins (F 1/16)
45
Inbreeding Depression
Corn Yield
F
46
Inbreeding in Small Pops.
  • F increases faster in
    small pops.
  • despite
    random mating

Prob. of 2 gametes with identical alleles equals
1
2N
47
Inbreeding Depression
  • - Genetic diseases (genetic load)
  • - Conservation genetics (Minimum
  • viable populations)
  • - rare species
  • - zoos
  • - Avoidance of inbreeding
  • - mating system, dispersal
  • http//www.richill.com/analyze.htm

48
Lion populations Genetic variation and
reproduction
Characteristics Tanzania 1
Tanzania 2 India Genetic Properties
Heterozygosity () 3.1
1.5 0.0 Reproductive Measures
Sperm Count 34
25 3 abnormal sperm
25 51
66 of Motile sperm 228
236 45
49
Geoff Winsor, BSc Honours
Daphnia pulex (water flea)
Clone 1
Clone 2
Clone 3
50
Avoidance of Inbreeding by Males
Self mating Outcross mating
Female 1 (self)
Male 1
Female 2 (outcross)
600 ml
1200 ml
1400 ml
2000 ml
Volume of Mating Container
51
Hardy-Weinberg
  • p2 2pq q2
  • AA Aa aa
  • Relax Assumptions
  • ? - Mutation
  • ? - Migration
  • ? - Non-random mating
  • - Finite population size (small pop., founder
    effect)
  • - Selection - differential survival,
  • fecundity etc. among genotypes

52
Finite Population Size
  • Introduces sampling error
  • allele proportions not transmitted
  • precisely between generations
  • sampling error increases with
  • decrease in population size

53
Finite Population Size
  • Example
  • - Pop. Size 5 2N genes 10
  • - 2 alleles H, T f(H) f(T) .5
  • NEXT Generation
  • H, T, T, H, H, T, H, H, T, H
  • f(H) .6 f(T) .4

54
Consequences of FinitePopulation Size
  • - q random (non-direction) , 0, -
  • - random genetic drift
  • - occurs in all pops., especially small pops.
  • - ultimate result loss q 0
  • fixation q
    1.0
  • (loss of genetic variation eg. heterozygosity)

55
N 200 individuals (6 populations)
q f(A2)
56
N 10 individuals (6 populations)
q f(A2)
Write a Comment
User Comments (0)
About PowerShow.com