Title: Messung von Luftverschmutzung aus dem All
1 The determination of snow albedo and aerosol
optical thickness from space in Arctic
- A. Kokhanovsky
- W. von Hoyningen-Huene, M. Schreier
- J. P. Burrows, A. Stohl
alexk_at_iup.physik.uni-bremen.de
2Introduction
- Anthropogenic activities have significantly
changed the tropospheric chemical composition and
also snow/ice albedo - Future changes are expected as result of
- increasing industrial activities, population
growth - Measurements are needed for
- monitoring
- improvement of understanding of mechanisms
- policy support
3 Global problems global observations
Dramatic change in population and their
emissions Global Transport and Transformation of
Pollution and Acid Deposition on Land and
Ocean Global Destruction of Stratospheric
Ozone Global Climate Change- Chemistry Climate
Feedback
4Nadir UV/vis Hyperspectral Satellite
Instruments(1995-2007)
- GOME
- 07.1995 06.2003 (full)
- 4 channels 240 790 nm
- 0.2 04 nm FWHM
- nadir viewing
- 320 x 40 km2 ground pixel
- sun-synchronous orbit, 1030
- global coverage in 3 days
- SCIAMACHY
- 03.2002 today
- 8 channels 240 1700 nmand 2 2.4 µm
- 0.2 04 nm (1.5 nm) FWHM
- nadir viewing limb solar / lunar occultation
- 60 x 30 km2 typical ground pixel
- sun-synchronous orbit, 1000
- global coverage in 6 days
- OMI
- imaging spectrometer
- launched 07.2004
- 13 x 24 -120 x 24 km2 ground pixel
- global coverage in 1 day
- GOME-2
- similar to GOME
- launched 10.2006
- 80 x 40 km2 ground pixel
- global coverage in 1.5 days
5AATSR and MERIS
- AATSR
- launched 03.2002
- 1x 1 km2 ground pixel
- sun-synchronous orbit, 1000
- Wavelengths
- 0.55µm
- 0.66µm
- 0.87µm
- 1.6µm
- 3.7µm
- 11 µm
- 12 µm
- MERIS
- 03.2002 today
- 15 channels (412-1000nm)
- nadir viewing
- 300 x 300m2 typical ground pixel
- sun-synchronous orbit, 1000
6MERIS imagery Spitzbergen
7MERIS
cloudy
April 25, 2006
8MERIS
cloudy
clear
9MERIS
clear
10MERIS
clear
11clear
MERIS
12clear
MERIS
13clear
MERIS
14AATSR IR measurements
15(No Transcript)
16Calculation of Reflectance at 3.7µm
Reflectance of 3.7µm was calculated using the
approach of Spangenberg et. al, 2000. The
contrast between snow and ice is increased here
contaminated Brightness Temperature at 3.7µm
Reflectance at 3.7µm
R Reflectance B3.7 Planck function at
3.7µm T3.7 Temperature at 3.7µm T11
Temperature at 11µm S3.7 Solar constant at
3.7µm µ_0 cos solar zenith angle e3.7 snow
emmisivity
17Cloud screening examples of reflectance (3.7µm)
for examined area (80N, 26W)
28. April 2004
02. Mai 2004
Clear sky (snow)
Low clouds
Clear sky (snow)
Low clouds
18ATMOSPHERIC CORRECTION
- Aerosol optical thickness
- Atmospheric reflectance
19BAER algorithm (von Hoyningen-Huene et al., JGR,
2003) AOT retrievals
MERIS
20April 28, 2006
May 3, 2006
MERIS
21Ground measurements (Stohl et al., 2007)
22MERIS atmospheric reflectance over ocean
ocean
23The snow albedo determination from a satellite
24Rayleigh
snow albedo
ozone
over sea
from AOT (Kokhanovsky et al., 2005)
25The first snow albedo determination using MERIS
measurements
SCIA 400DU
79.8N, 24.6E
MERIS
26theory
measurements
grains a0.85mm
MERIS
27Hudson et al., 2006
282006
ECMWFTgt0
April 26
(Law and Stohl, 2007)
May 2
MERIS
29The location of retrievals
30Conclusions
- The retrieval of snow albedo from space requires
a thoroughly calibrated instrument - The retrieval of soot concentration in snow from
a satellite is a complex matter due to low
concentrations of soot, e.g., in Arctic,
uncertainties of atmospheric correction over
snow, the possible reduction of snow albedo due
to melting processes and uptake of water - The atmospheric correction/albedo retrieval can
be successfully accomplished for snow fields
close to the shore
311
29
25
30
5
4
3
2
10
9
6
7
32?
clear
33clear