IMFIMF Directionnal Correlations - PowerPoint PPT Presentation

About This Presentation
Title:

IMFIMF Directionnal Correlations

Description:

A. Le F vre (GSI Darmstadt) WCI III 12-16 February 2005 - Texas A&M ... oblate ... oblate. sphere. beam. transversal. longitudinal ... – PowerPoint PPT presentation

Number of Views:31
Avg rating:3.0/5.0
Slides: 15
Provided by: Schw99
Category:

less

Transcript and Presenter's Notes

Title: IMFIMF Directionnal Correlations


1
IMF-IMF Directionnal Correlations
  • Motivations
  • Characterization of geometrical properties of the
    composite system, at the moment of fragment
    emissions (freeze-out) volume (density),
    elongation in real space.
  • Provide additionnal inputs to nuclear stopping
    systematics in real space.

HI
HI
2
Already existing method directional cuts
weights.
  • Hard cuts (S.E. Koonin, Phys. Lett. B 70
    (1977) 43
  • M.A. Lisa et al., Phys. Rev. Let. 71 (1993)
    2863)
  • longitudinal ? lt 30o
  • transversal 60o lt ? lt 120o
  • OR
  • Weighted (C. Schwarz et al., Nucl. Phys. A 681
    (2001) 279)
  • longitudinal cos2(?)
  • transversal sin2(?)

light particle resonances
3
Already existing method directional cuts
weights.
c2 - test
C. Schwarz et al., Nucl. Phys. A 681 (2001) 279
Emission times are short and comparable with
passing time of spectator (volume break up)
Radii ? 8 fm (expansion)
4
Already existing method directional cuts
weights.
Application to IMF-IMF correlations
N-body Coulomb trajectory
Central XeSn _at_ 50 A.MeV INDRA_at_GSI
A. Le Fèvre, C. Schwarz et al., Bormio 2003
Conference Proceedings
5
Second method (new) directional projections.
Longitudinal projections vrelcos(?) Transversa
l projections vrelsin(?)
A. Le Fèvre, C. Schwarz et al., Bormio 2003
Conference Proceedings
6
Summary
  • IMF-IMF directionnal correlation functions allow
    to extract information on spatial extensions of
    the emitting source (volume and aspect ratios),
    assuming short emission times.
  • Model independent.
  • Needs a 4p detection of the composite system.

7
Directional weights vs projections
N-body Coulomb trajectory
Data central XeSn 50 A.MeV (INDRA_at_GSI)
Directional weights
Projections
R(0.671)
Good sensitivity on density Broad minimum for
shape
Good sensitivity on shape and density.
8
Weighted corr. func.
N-body Coulomb traj.
9
Projected corr. func.
prolate
oblate
10
Already existing method directional cuts
weights.
Application to IMF-IMF correlations
MMMC-NS calculations
?
vrel
r r0 / 6 E 6 A.MeV Ecoll 2.3 A.MeV INDRA
filtered
beam
A. Le Fèvre, C. Schwarz et al., Bormio 2003
Conference Proceedings
11
Coulomb correlation functions for XeSn _at_ 50 AMeV
12
Short fragment emission times
  • lt 20-50 fm/c
  • Cf. L. Beaulieu et al., PRL 84(2000)5971

13
Experimental results
Ref. A. Le Fèvre et al. arXivnucl-ex/0309016
14
MMMC central XeSn, 50 A.MeV phase space (Zgt4)
Coordinate space
Velocity space
Without Coulomb
With Coulomb
With Coulomb
Write a Comment
User Comments (0)
About PowerShow.com