COE 308: Computer Architecture T032 Dr' Marwan AbuAmara - PowerPoint PPT Presentation

About This Presentation
Title:

COE 308: Computer Architecture T032 Dr' Marwan AbuAmara

Description:

Integer & Floating-Point Arithmetic (cont. ... Significand (or Mantissa) ... Significand = Mantissa = 1 fraction ... – PowerPoint PPT presentation

Number of Views:56
Avg rating:3.0/5.0
Slides: 10
Provided by: icsd
Category:

less

Transcript and Presenter's Notes

Title: COE 308: Computer Architecture T032 Dr' Marwan AbuAmara


1
COE 308 Computer Architecture (T032)Dr. Marwan
Abu-Amara
  • Integer Floating-Point Arithmetic (cont.)
  • (Appendix A, Computer Architecture A
    Quantitative Approach, J. Hennessy D.
    Patterson, 1st Edition, 1990)

2
Radix-2 Multiplication Division
  • Signed Numbers Multiplication To perform 2s
    complement multiplication, use same algorithm as
    before but with the following modifications
  • At the ith multiply step, LSB of A is ai, and
  • for 1st step (i.e. when i 0), take ai-1 to be
    0
  • Shift P arithmetically (i.e. copy sign bit) 1 bit
    to right

3
Example 1 of Multiplication
  • Multiply -6 by -5 ? A -6 a3a2a1a0 10102 B
    -5 10112
  • Iteration Step P A ai-1
  • 0000 1010 0
  • 0 1 0000
  • 0 0000 1010
  • 2 0000 0101 0
  • -B 1 0101
  • 1 0101 0101
  • 2 0010 1010 1
  • B 1 1011
  • 2 1101 1010
  • 2 1110 1101 0
  • -B 1 0101
  • 3 0011 1101
  • 2 0001 1110 1 ? Product P A 30

4
Example 2 of Multiplication
  • Multiply -6 by 5 ? A -6 a3a2a1a0 10102 B
    5 01012
  • Iteration Step P A ai-1
  • 0000 1010 0
  • 0 1 0000
  • 0 0000 1010
  • 2 0000 0101 0
  • -B 1 1011
  • 1 1011 0101
  • 2 1101 1010 1
  • B 1 0101
  • 2 0010 1010
  • 2 0001 0101 0
  • -B 1 1011
  • 3 1100 0101
  • 2 1110 0010 1 ? Product P A -30

5
Floating Point
  • A floating-point number (FP ) is divided into 2
    parts
  • Exponent
  • Significand (or Mantissa)
  • FP significand ? baseexponent (e.g. exponent
    -2 significand 1.5 ? FP 1.5 ? 2-2
    0.375)
  • Single-precision is represented using 32 bits
  • 1 for sign
  • 8 for exponent
  • 23 for fraction
  • Exponent is a signed represented using the bias
    method with a bias of 127
  • Significand Mantissa 1 fraction
  • Thus, if e value of exponent field, and f
    value of fraction field, then FP represented is
    1.f ? 2e127

6
Floating Point (cont.)
  • Example What single-precision FP does the
    following 32-bit word represent? 110000001010000
  • 1 10000001 010000 ?
  • sign 1 ve
  • exponent field e 100000012 129 (?
    exponent 129127 2)
  • fraction field f .0100002 0.012 0.25
  • ? FP 1.f ? 2e127 1.25 ? 2129127 1.25
    ? 4 5
  • Range of exponent field (i.e. e) is from 1 to 254
    (i.e. exponent is from 126 to 127)
  • e 0 or 255 are used to represent special values

7
Floating Point (cont.)
8
Floating Point Addition
  • What is the sum of 1,234,823.333 .0011?
  • Need to line up the decimal points first
  • This is the same as shifting the significand
    while changing the exponents
  • 1,234,823.333 1.234823333 ? 106
  • .0011 1.1 ? 10-3 0.0000000011 ? 106
  • Add significands (using integer addition)
  • Significand sum 1.234823333 0.0000000011
  • 1.2348233341
  • Normalize the result, if needed
  • Result 1.2348233341 ? 106

9
Floating Point Addition (cont.)
  • Binary FP Addition Algorithm
  • Similar to decimal FP addition method
  • Let ei exponent, si significand (i.e. 1 fi
    24 bits), then steps of algorithm are
  • If e1 lt e2, swap the operands, calculate d e1
    e2 (note that d ? 0), and set exponent of result
    to e1
  • Shift s2 by d places to the right
  • Add s1 result of step 2, and store result in s1
  • Normalize
  • If result of step 3 (i.e. s1) ? 2 ? Shift s1 by 1
    place right add 1 to exponent
  • If s1 lt 1 ? Shift s1 to left until leftmost
    binary digit is 1 subtract of shifts from
    exponent
  • If s1 0 ? Load special zero pattern into
    exponent
  • Otherwise, do nothing (i.e. done)
Write a Comment
User Comments (0)
About PowerShow.com