Optical Subcarrier Generation - PowerPoint PPT Presentation

1 / 12
About This Presentation
Title:

Optical Subcarrier Generation

Description:

Heterodyning of two single-mode lasers. A Tunable Millimeter-Wave ... Heterodyne Signal ... Performance of the Heterodyne System. Continuous tuning range ... – PowerPoint PPT presentation

Number of Views:101
Avg rating:3.0/5.0
Slides: 13
Provided by: xiao115
Category:

less

Transcript and Presenter's Notes

Title: Optical Subcarrier Generation


1
Optical Subcarrier Generation
  • Long Xiao
  • 03/12/2003

2
Outline
  • Optical Subcarrier generate
  • Optical phase locked loop (OPLL)

3
Four Methods of Optical Generation of a
Millimeter-wave subcarrier
  • Direct modulation of a laser diode.
  • External modulation.
  • Laser mode locking.
  • Heterodyning of two single-mode lasers.

4
A Tunable Millimeter-Wave Optical Transmitter
5
Photograph of Two Laser Module
6
Spectrum of the Heterodyne Signal
The 0.3 nm wavelength separation between the
outputs of two microchip-lasers corresponds to 90
GHz heterodyne signal.
7
Performance of the Heterodyne System
  • Continuous tuning range (CTR) 45 GHz.
  • Sensitivity 13.4 MHz/ V.
  • Phase noise -90 dBc/Hz at 10 kHz offset.

8
Diagram of the Optical Phase Locked Loop With
Reference Signal
Master Laser
Optical Coupler
Photodector
Reference Signal
Slave Laser
Loop Filter
9
Diagram of the Phase Locked Loop With Delay Line
10
Packaged Optical Phase Locked Loop
11
References
  • 1 Y. LI, A. J. C. Vieira, S. M. Goldwasser, P.
    R. Herczfeld, Rapidly Tunable
    Millimeter-Wave Optical Transmitter for
    Lidar/Radar, IEEE Transactions on Microwave
    Theory and Techniques, special issue on microwave
    and millimeter-wave photonics, Vol. 49, No. 10,
    pp. 2048-2054, October 2001.
  • 2 Y. Li, S. Goldwasser, P. R. Herczfeld,
    Optical Generated Dynamically Tunable,Low Noise
    Millimeter Wave Signals Using Microchip Solid
    Satte Lasers.
  • 3 Yao, X. Steve, et al, Optoelectronic
    oscillator for photonic systems, IEEE Journal of
    Quantum Electronics, v32, n7, pp 1141-1149, Jul,
    1996.
  • 4 Yao, X. Steve, et al, Multiloop
    optoelectronic oscillator, IEEE Journal of
    Quantum Electronics, v36, n1, pp 79-84, 2000.
  • 5 R. T. Ramos, A. J. Seeds, Delay, Linewidth
    and Bandwidth Limitations in Optical Phase-locked
    Loop Design, Electronics Letters, Vol. 26, No.
    6, pp 389-391, March 1990.
  • 6 A. C. Bordonalli, C. Walton, A. J. Seeds,
    High-Performance Homodyne Optical Injection
    Phase-Lock Loop Using Wide-Linewidth
    Semiconductor Lasers, IEEE Photonics Technology
    Letters, Vol. 8, No. 9, September 1996.

12
References
  • 7 R. T. Ramos and A. J. Seeds, comparison
    between first-order and second-order optical
    phase-lock loops, IEEE microwave and guided wave
    letters, vol. 4, no. 1. January 1994.
  • 8 L. N. Langley, M. D. Elkin, C. Edge, M. J.
    Wale, U. Gliese, X. Huang, and A. J. Seeds,
    packaged semiconductor laser optical
    phase-locked loop (OPLL) for Photonic generation,
    processing and transmission of microwave signals.
    IEEE Transcations on microwave theory and
    techniques, vol. 47, no. 7, July 1999.
  • 9 L. G. Kazovsky, and D. A. Atlas, A 1320 nm
    experimental optical phase-locked loop, IEEE
    Photonics technology letters, vol. 1. No. 11,
    November 1989.
  • 10 L. G. Kazovsky, and B. Jensen, experimental
    relative frequency stabilization of a set of
    lasers using optical phase-locked loops, IEEE
    Photonics technology letters, vol. 2. No. 7, July
    1990.
  • 11 L. G. Kazovsky, and D. A. Atlas, A 1320-nm
    experimental optical phase-locked loop
    performance investigation and PSK homodyne
    experiments at 140 Mb/s and 2 Gb/s. Journal of
    Lightwave technology, vol. 8. No. 9. September
    1990.
Write a Comment
User Comments (0)
About PowerShow.com