Title: Optical Subcarrier Generation
1Optical Subcarrier Generation
2Outline
- Optical Subcarrier generate
- Optical phase locked loop (OPLL)
3Four Methods of Optical Generation of a
Millimeter-wave subcarrier
- Direct modulation of a laser diode.
- External modulation.
- Laser mode locking.
- Heterodyning of two single-mode lasers.
4A Tunable Millimeter-Wave Optical Transmitter
5Photograph of Two Laser Module
6Spectrum of the Heterodyne Signal
The 0.3 nm wavelength separation between the
outputs of two microchip-lasers corresponds to 90
GHz heterodyne signal.
7Performance of the Heterodyne System
- Continuous tuning range (CTR) 45 GHz.
- Sensitivity 13.4 MHz/ V.
- Phase noise -90 dBc/Hz at 10 kHz offset.
8Diagram of the Optical Phase Locked Loop With
Reference Signal
Master Laser
Optical Coupler
Photodector
Reference Signal
Slave Laser
Loop Filter
9Diagram of the Phase Locked Loop With Delay Line
10Packaged Optical Phase Locked Loop
11References
- 1 Y. LI, A. J. C. Vieira, S. M. Goldwasser, P.
R. Herczfeld, Rapidly Tunable
Millimeter-Wave Optical Transmitter for
Lidar/Radar, IEEE Transactions on Microwave
Theory and Techniques, special issue on microwave
and millimeter-wave photonics, Vol. 49, No. 10,
pp. 2048-2054, October 2001. - 2 Y. Li, S. Goldwasser, P. R. Herczfeld,
Optical Generated Dynamically Tunable,Low Noise
Millimeter Wave Signals Using Microchip Solid
Satte Lasers. - 3 Yao, X. Steve, et al, Optoelectronic
oscillator for photonic systems, IEEE Journal of
Quantum Electronics, v32, n7, pp 1141-1149, Jul,
1996. - 4 Yao, X. Steve, et al, Multiloop
optoelectronic oscillator, IEEE Journal of
Quantum Electronics, v36, n1, pp 79-84, 2000. - 5 R. T. Ramos, A. J. Seeds, Delay, Linewidth
and Bandwidth Limitations in Optical Phase-locked
Loop Design, Electronics Letters, Vol. 26, No.
6, pp 389-391, March 1990. - 6 A. C. Bordonalli, C. Walton, A. J. Seeds,
High-Performance Homodyne Optical Injection
Phase-Lock Loop Using Wide-Linewidth
Semiconductor Lasers, IEEE Photonics Technology
Letters, Vol. 8, No. 9, September 1996.
12References
- 7 R. T. Ramos and A. J. Seeds, comparison
between first-order and second-order optical
phase-lock loops, IEEE microwave and guided wave
letters, vol. 4, no. 1. January 1994. - 8 L. N. Langley, M. D. Elkin, C. Edge, M. J.
Wale, U. Gliese, X. Huang, and A. J. Seeds,
packaged semiconductor laser optical
phase-locked loop (OPLL) for Photonic generation,
processing and transmission of microwave signals.
IEEE Transcations on microwave theory and
techniques, vol. 47, no. 7, July 1999. - 9 L. G. Kazovsky, and D. A. Atlas, A 1320 nm
experimental optical phase-locked loop, IEEE
Photonics technology letters, vol. 1. No. 11,
November 1989. - 10 L. G. Kazovsky, and B. Jensen, experimental
relative frequency stabilization of a set of
lasers using optical phase-locked loops, IEEE
Photonics technology letters, vol. 2. No. 7, July
1990. - 11 L. G. Kazovsky, and D. A. Atlas, A 1320-nm
experimental optical phase-locked loop
performance investigation and PSK homodyne
experiments at 140 Mb/s and 2 Gb/s. Journal of
Lightwave technology, vol. 8. No. 9. September
1990.