Title: Chemistry 301 Mathematics 251 Chapter 5
1Chemistry 301/ Mathematics 251Chapter 5
2Power Series
Consider power series
Expanded the function into an infinite
polynomial Used the powers of x as a basis
set Can consider other expansions
3Fourier Series
4Fourier Series
5Fourier Series
Will also work if
6Fourier Series
consider
7Fourier Series
8Fourier Series
Can also show
9Fourier Series
Change of interval from 2p to 2L
10Fourier Transform
L ? ?
11Fourier Transform
Use Euler relations
12Fourier Transform
x, y conjugate variables Eg. Time
frequency Distance wavelength
13Fourier Transform
14Fourier Transform
Shine laser (n0) on detector, measure signal as
function of time
15Fourier Transform
Beamsplitter
Fixed Plane Mirror
If no optical path difference then beams will
simply recombine If there is an optical path
difference then beams will be out of phase -
interference
Moving Plane Mirror
16Michelson Interferometer
a/2
Monochromatic beam
(ad)/2
Signal on detector will vary with optical path
difference
17Michelson Interferometer
18Michelson Interferometer
19Michelson Interferometer
20Michelson Interferometer
21Michelson Interferometer
22Michelson Interferometer
23Michelson Interferometer
24Michelson Interferometer
25Fourier Transform
Interferogram is of finite length
26Fourier Transform
27Apodization
- Lineshape is due to fact that interferogram is
not infinite. - Multiply experimental interferogram by
apodization function to force it to zero (or
close to zero) - Apodization functions
- Triangular H(d) 1- d/X
- quarter wave H(d) cos (0.5pd/X)
- Happ Genzel H(d) 0.54 0.46cos(pd/X)
28Apodization
29Applications of FT to Spectrometry
- IR
- Raman
- UV-Vis (not popular)
- NMR
- FT-ICR Mass Spectrometry
30Advantages of FT - Spectroscopy
- Multiplex (Fellgett) advantage
- signal averaging increases SNR
- same time, FT gives better SNR (10 to 1000 x)
- Throughput (Jacquinot) advantage
- no slits
- ³ 100 x
- Connes Accuracy (IR Raman)
- Use He-Ne Laser to determine mirror position
(very reproducible) - Wavenumber are very precise and accurate
- Do not need to calibrate spectrometer with a
standard.
31Discrete Fourier Transform
- Digital data
- Interferogram sampled at discrete points (N)
- Will have N points in the spectrum
- Zero fill
- Add N zeros to end of interferogram
- Total 2N points
- Interferogram does not contain any new
information - Spectrum will have 2N points
32Hilbert/ Kramers - Kronig Transformations
33Hilbert/ Kramers - Kronig Transformations
Cauchy Goursat integral
34Hilbert/ Kramers - Kronig Transformations
35Hilbert/ Kramers - Kronig Transformations
36Hilbert/ Kramers - Kronig Transformations
X
37Hilbert/ Kramers - Kronig Transformations
Cauchy Principal Value
38Hilbert/ Kramers - Kronig Transformations
39Hilbert/ Kramers - Kronig Transformations
40Hilbert/ Kramers - Kronig Transformations
Special Case
Hilbert Transforms
41Hilbert/ Kramers - Kronig Transformations
Special Case
42Hilbert/ Kramers - Kronig Transformations
Special Case
43Hilbert/ Kramers - Kronig Transformations
Special Case
Kramers - Kronig (KK) Transforms
44Optical properties
Speed of light in vacuum
Speed of light in medium
Refractive index
Equations for non-absorbing hold for absorbing
medium if use complex refractive index
Complex Refractive index
Imaginary Refractive index (absorption index)
Real Refractive index
45Optical properties
- Non-absorbing medium (Dielectric Constant)
46Optical properties
Kramers - Kronig (KK) Transforms
Hilbert Transforms
C. D. Keefe, J. Mol. Spec., 205, 261-268 (2001).
47Transmission of Sample
- Non-absorbing medium
- Not all of light will reach detector due to
reflection - Absorbing medium
- Some of light will be absorbed
- Measured intensity will depend on reflection and
absorption - i.e will depend on n and k
48Transmission of cell
Liquid- absorbing- reflection and absorption
(complex refractive index)
One measurement (amount of light lost) Two
unknowns (n k) Use iterative procedure with KK
Windows - non-absorbing- reflection only (real
refractive index)
49Iterative procedure to determine optical constants
- Determine n?
- Measure experimental transmission
- Assume k 0, n n?
- Calculate transmission of system (using Fresnel
equations) - Compare 4 with 2
- Adjust k
- Calculate n from k (KK transform)
- Repeat 4 7 until calculated transmission agrees
with exp (within tolerance)
50Benzene absorption spectrum
Wavenumber / cm-1
J. E. Bertie C. D. Keefe, J. Mol. Struct.,
695-696, 39-57 (2004).
51Benzene k spectrum
Wavenumber / cm-1
J. E. Bertie C. D. Keefe, J. Mol. Struct.,
695-696, 39-57 (2004).
52Benzene n spectrum
Wavenumber / cm-1
J. E. Bertie C. D. Keefe, J. Mol. Struct.,
695-696, 39-57 (2004).
53Benzene e? spectrum
Wavenumber / cm-1
J. E. Bertie C. D. Keefe, J. Mol. Struct.,
695-696, 39-57 (2004).
54Benzene e' spectrum
Wavenumber / cm-1
J. E. Bertie C. D. Keefe, J. Mol. Struct.,
695-696, 39-57 (2004).
55Necessary Approximations
- Experimental data is digital
- Calculate numerical integral
- MacLaurin approx (sum over every second point)
- K. Ohta H. Ishida, Appl. Spectrosc. 42, 952
(1998) - Experimental measurement is finite
- Eg. IR will have contributions from UV/Vis
- J. E. Bertie Z. Lan, J. Chem. Phys., 103, 10152
(1995) - Absorption may not be zero at low limit
- J. E. Bertie S. L. Zhang, Can. J. Chem., 70,
520 (1992) - Absorptions below limit of region
56Hadamard Transform
- Series of orthogonal symmetric transforms of
order 2m, m 0, 1, 2, - Defined by recursive formula
57Hadamard Transform
- Used in data compression, video compression
- Offers multiplexing advantage
- Same number of measurements ? greater SNR
58Hadamard Transform
- M 2 case (i.e want to measure x1 x2)
- Instead of measuring directly measure the
combinations s1 s2
59Hadamard Transform
- Consider x1 50g x2 40g
- Assume our balance has a systematic error of 5g
- Measure x1 x2 directly get x1 55g x2 45g
- Measure s1 s2 get s1 67g s2 11g
Improved value
60Hadamard Transform
- Consider x1 50g x2 40g
- Assume our balance has a random error of d
- Measure x1 x2 directly get x1 50 d g x2
40 d g - Measure s1 s2 get s1 (90 d)g/?2 s2 (10
d)g/?2
61Hadamard Transform
- Must measure positive and negative signals
- Requires 2 detectors
- Not always practical
- Use alternate form based on Sylvester (S-type)
matrix
Omit normalization factor Omit 1st row and
column Replace 1 with 0 Replace -1 with 1
62Hadamard Transform
Omit normalization factor Omit 1st row and
column Replace 1 with 0 Replace -1 with 1
63Hadamard Transform
64Hadamard Transform
65Hadamard Transform - Example
Wrong zero on balance
66Hadamard Transform
Systematic error (ds)
67Hadamard Transform
Random error (dr)
68Hadamard Transform