Chemistry 301 Mathematics 251 Chapter 5 - PowerPoint PPT Presentation

1 / 68
About This Presentation
Title:

Chemistry 301 Mathematics 251 Chapter 5

Description:

Expanded the function into an infinite polynomial. Used the powers of ... Calculate transmission of system (using Fresnel equations) Compare 4 with 2. Adjust k ... – PowerPoint PPT presentation

Number of Views:47
Avg rating:3.0/5.0
Slides: 69
Provided by: dalek4
Category:

less

Transcript and Presenter's Notes

Title: Chemistry 301 Mathematics 251 Chapter 5


1
Chemistry 301/ Mathematics 251Chapter 5
  • Complex Transforms

2
Power Series
Consider power series
Expanded the function into an infinite
polynomial Used the powers of x as a basis
set Can consider other expansions
3
Fourier Series
4
Fourier Series
5
Fourier Series
Will also work if
6
Fourier Series
consider
7
Fourier Series
8
Fourier Series
Can also show
9
Fourier Series
Change of interval from 2p to 2L
10
Fourier Transform
L ? ?
11
Fourier Transform
Use Euler relations
12
Fourier Transform
x, y conjugate variables Eg. Time
frequency Distance wavelength
13
Fourier Transform
14
Fourier Transform
Shine laser (n0) on detector, measure signal as
function of time
15
Fourier Transform
Beamsplitter
Fixed Plane Mirror
If no optical path difference then beams will
simply recombine If there is an optical path
difference then beams will be out of phase -
interference
Moving Plane Mirror
16
Michelson Interferometer
a/2
Monochromatic beam
(ad)/2
Signal on detector will vary with optical path
difference
17
Michelson Interferometer
18
Michelson Interferometer
19
Michelson Interferometer
20
Michelson Interferometer
21
Michelson Interferometer
22
Michelson Interferometer
23
Michelson Interferometer
24
Michelson Interferometer
25
Fourier Transform
Interferogram is of finite length
26
Fourier Transform
27
Apodization
  • Lineshape is due to fact that interferogram is
    not infinite.
  • Multiply experimental interferogram by
    apodization function to force it to zero (or
    close to zero)
  • Apodization functions
  • Triangular H(d) 1- d/X
  • quarter wave H(d) cos (0.5pd/X)
  • Happ Genzel H(d) 0.54 0.46cos(pd/X)

28
Apodization
29
Applications of FT to Spectrometry
  • IR
  • Raman
  • UV-Vis (not popular)
  • NMR
  • FT-ICR Mass Spectrometry

30
Advantages of FT - Spectroscopy
  • Multiplex (Fellgett) advantage
  • signal averaging increases SNR
  • same time, FT gives better SNR (10 to 1000 x)
  • Throughput (Jacquinot) advantage
  • no slits
  • ³ 100 x
  • Connes Accuracy (IR Raman)
  • Use He-Ne Laser to determine mirror position
    (very reproducible)
  • Wavenumber are very precise and accurate
  • Do not need to calibrate spectrometer with a
    standard.

31
Discrete Fourier Transform
  • Digital data
  • Interferogram sampled at discrete points (N)
  • Will have N points in the spectrum
  • Zero fill
  • Add N zeros to end of interferogram
  • Total 2N points
  • Interferogram does not contain any new
    information
  • Spectrum will have 2N points

32
Hilbert/ Kramers - Kronig Transformations
33
Hilbert/ Kramers - Kronig Transformations
Cauchy Goursat integral
34
Hilbert/ Kramers - Kronig Transformations
35
Hilbert/ Kramers - Kronig Transformations
36
Hilbert/ Kramers - Kronig Transformations
X
37
Hilbert/ Kramers - Kronig Transformations
Cauchy Principal Value
38
Hilbert/ Kramers - Kronig Transformations
39
Hilbert/ Kramers - Kronig Transformations
40
Hilbert/ Kramers - Kronig Transformations
Special Case
Hilbert Transforms
41
Hilbert/ Kramers - Kronig Transformations
Special Case
42
Hilbert/ Kramers - Kronig Transformations
Special Case
43
Hilbert/ Kramers - Kronig Transformations
Special Case
Kramers - Kronig (KK) Transforms
44
Optical properties
  • Non-absorbing medium

Speed of light in vacuum
Speed of light in medium
Refractive index
  • Absorbing medium

Equations for non-absorbing hold for absorbing
medium if use complex refractive index
Complex Refractive index
Imaginary Refractive index (absorption index)
Real Refractive index
45
Optical properties
  • Non-absorbing medium (Dielectric Constant)
  • Absorbing medium

46
Optical properties
Kramers - Kronig (KK) Transforms
Hilbert Transforms
C. D. Keefe, J. Mol. Spec., 205, 261-268 (2001).
47
Transmission of Sample
  • Non-absorbing medium
  • Not all of light will reach detector due to
    reflection
  • Absorbing medium
  • Some of light will be absorbed
  • Measured intensity will depend on reflection and
    absorption
  • i.e will depend on n and k

48
Transmission of cell
Liquid- absorbing- reflection and absorption
(complex refractive index)
One measurement (amount of light lost) Two
unknowns (n k) Use iterative procedure with KK
Windows - non-absorbing- reflection only (real
refractive index)
49
Iterative procedure to determine optical constants
  • Determine n?
  • Measure experimental transmission
  • Assume k 0, n n?
  • Calculate transmission of system (using Fresnel
    equations)
  • Compare 4 with 2
  • Adjust k
  • Calculate n from k (KK transform)
  • Repeat 4 7 until calculated transmission agrees
    with exp (within tolerance)

50
Benzene absorption spectrum
Wavenumber / cm-1
J. E. Bertie C. D. Keefe, J. Mol. Struct.,
695-696, 39-57 (2004).
51
Benzene k spectrum
Wavenumber / cm-1
J. E. Bertie C. D. Keefe, J. Mol. Struct.,
695-696, 39-57 (2004).
52
Benzene n spectrum
Wavenumber / cm-1
J. E. Bertie C. D. Keefe, J. Mol. Struct.,
695-696, 39-57 (2004).
53
Benzene e? spectrum
Wavenumber / cm-1
J. E. Bertie C. D. Keefe, J. Mol. Struct.,
695-696, 39-57 (2004).
54
Benzene e' spectrum
Wavenumber / cm-1
J. E. Bertie C. D. Keefe, J. Mol. Struct.,
695-696, 39-57 (2004).
55
Necessary Approximations
  • Experimental data is digital
  • Calculate numerical integral
  • MacLaurin approx (sum over every second point)
  • K. Ohta H. Ishida, Appl. Spectrosc. 42, 952
    (1998)
  • Experimental measurement is finite
  • Eg. IR will have contributions from UV/Vis
  • J. E. Bertie Z. Lan, J. Chem. Phys., 103, 10152
    (1995)
  • Absorption may not be zero at low limit
  • J. E. Bertie S. L. Zhang, Can. J. Chem., 70,
    520 (1992)
  • Absorptions below limit of region

56
Hadamard Transform
  • Series of orthogonal symmetric transforms of
    order 2m, m 0, 1, 2,
  • Defined by recursive formula

57
Hadamard Transform
  • Used in data compression, video compression
  • Offers multiplexing advantage
  • Same number of measurements ? greater SNR

58
Hadamard Transform
  • M 2 case (i.e want to measure x1 x2)
  • Instead of measuring directly measure the
    combinations s1 s2

59
Hadamard Transform
  • Consider x1 50g x2 40g
  • Assume our balance has a systematic error of 5g
  • Measure x1 x2 directly get x1 55g x2 45g
  • Measure s1 s2 get s1 67g s2 11g

Improved value
60
Hadamard Transform
  • Consider x1 50g x2 40g
  • Assume our balance has a random error of d
  • Measure x1 x2 directly get x1 50 d g x2
    40 d g
  • Measure s1 s2 get s1 (90 d)g/?2 s2 (10
    d)g/?2

61
Hadamard Transform
  • Must measure positive and negative signals
  • Requires 2 detectors
  • Not always practical
  • Use alternate form based on Sylvester (S-type)
    matrix

Omit normalization factor Omit 1st row and
column Replace 1 with 0 Replace -1 with 1
62
Hadamard Transform
Omit normalization factor Omit 1st row and
column Replace 1 with 0 Replace -1 with 1
63
Hadamard Transform
64
Hadamard Transform
65
Hadamard Transform - Example
Wrong zero on balance
66
Hadamard Transform
Systematic error (ds)
67
Hadamard Transform
Random error (dr)
68
Hadamard Transform
Write a Comment
User Comments (0)
About PowerShow.com